Fast-forming yet
easily dissolvable hydrogels (HGs) have potential
applications in wound healing, burn incidences, and delivery of therapeutic
agents. Herein, a combination of a thiol–maleimide conjugation
and thiol–disulfide exchange reaction is employed to fabricate
fast-forming HGs which rapidly dissolve upon exposure to dithiothreitol
(DTT), a nontoxic thiol-containing hydrophilic molecule. In particular,
maleimide disulfide-terminated telechelic linear poly(ethylene glycol)
(PEG) polymer and PEG-based tetrathiol macromonomers are employed
as gel precursors, which upon mixing yield HGs within a minute. The
selectivity of the thiol–maleimide conjugation in the presence
of a disulfide linkage was established through
1
H NMR spectroscopy
and Ellman’s test. Rapid degradation of HGs in the presence
of thiol-containing solution was evident from the reduction in storage
modulus. HGs encapsulated with fluorescent dye-labeled dextran polymers
and bovine serum albumin were fabricated, and their cargo release
was investigated under passive and active conditions upon exposure
to DTT. One can envision that the rapid gelation and fast on-demand
dissolution under relatively benign conditions would make these polymeric
materials attractive for a range of biomedical applications.
In recent years, stimuli-responsive degradation has emerged as a desirable design criterion for functional hydrogels to tune the release of encapsulated payload as well as ensure degradation of the gel upon completion of its function. Herein, redox-responsive hydrogels with a well-defined network structure were obtained using a highly efficient thiol-disulfide exchange reaction. In particular, gelation occurred upon combining thiolterminated tetra-arm polyethylene glycol (PEG) polymers with linear telechelic PEG-based polymers containing pyridyl disulfide units at their chain ends. Rapid gelation proceeds with good conversions (>85%) to yield macroporous hydrogels possessing high water uptake. Furthermore, due to the presence of the disulfide linkages, the thus-obtained hydrogels can self-heal. The obtained hydrogels undergo complete degradation when exposed to environments rich in thiol-containing agents such as dithiothreitol (DTT) and L-glutathione (GSH). Also, the release profile of encapsulated protein, namely, bovine serum albumin, can be tuned by varying the molecular weight of the polymeric precursors. Additionally, it was demonstrated that complete dissolution of the hydrogel to rapidly release the encapsulated protein occurs upon treating these hydrogels with DTT. Cytotoxicity evaluation of the hydrogels and their degradation products indicated the benign nature of these hydrogels. Additionally, the cytocompatible nature of these materials was also evident from a live/dead cell viability assay. One can envision that the facile fabrication and their ability to degrade on-demand and release their payload will make these benign polymeric scaffolds attractive for various biomedical applications.
Electrospun nanofibers are a 3D scaffold of choice for many drug delivery devices due to their high surface area, significant capacity for drug payload, ease of in situ placement, and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.