Habitat complexity is accepted as a general mechanism for increasing the abundance and diversity of communities. However, the circumstances under which complexity has the strongest effects are not clear. Over 20 degrees of Australia's east coast, we tested whether the effects of within-site structural habitat complexity on the diversity and community structure of sessile marine invertebrates was consistent over a latitudinal gradient where environmental conditions and species composition vary. We used experimental arrays with varied structural treatments to detect whether community cover, species richness, diversity and community composition (β-diversity) changed with increasing complexity. Community response to complexity varied over latitude due to differences in species richness and community development. Increased complexity had the greatest positive effects on community cover and species richness at higher latitudes where recruitment and growth were low. At lower latitudes, community cover and species richness were higher overall and did not vary substantially between complexity treatments. Latitudinal variation in within-treatment β-diversity relative to complexity further suggest divergent community responses. At higher latitudes, increased similarity in more complex treatments suggests community dominance of successful taxonomic groups. Despite limited effects on species richness and community cover at lower latitudes, β-diversity was higher in more complex treatments, signifying potential positive effects of increased complexity at these sites. These results demonstrate the context-dependency of complexity effects in response to variation in species richness and community development and should be taken into consideration to help direct conservation and restoration efforts.
The proliferation of anthropogenic infrastructure in the marine environment has aided the establishment and spread of invasive species. These structures can create novel habitats in areas normally characterised as void of suitable settlement sites. The habitat requirements of the invasive acorn barnacle Austrominius modestus (Darwin, 1854) were assessed using a novel sampling site at Crosby Beach, Liverpool. Austrominius modestus has spread rapidly around the UK since its initial introduction, becoming locally dominant in many estuarine areas including the Antony Gormley art installation, ‘Another Place’, at Crosby Beach. The installation consists of 100 replicate solid cast-iron life-size human figures, located at a range of heights on the shore. We recorded the distribution and abundance of A. modestus present on all of the statues at various positions during the summer of 2006. The positions varied in location, exposure, direction, and rugosity. Although parameters such as rugosity and exposure did influence patterns of recruitment, they were less important than interactions between shore height and direction, and specific location on the beach. The addition of a suitable substrate to a sheltered and estuarine region of Liverpool Bay has facilitated the establishment of A. modestus. Understanding the habitat requirements of invasive species is important if we are to make predictions about their spread and the likelihood of invasion success. Austrominius modestus has already become locally dominant in some regions of the UK and, with projections of favourable warming conditions and the global expansion of artificial structures, the continued spread of this species can be expected. The implications of this on the balance between native and invasive species dominance should be considered.
Artificial structures can create novel habitat in the marine environment that has been associated with the spread of invasive species. They are often located in areas of high disturbance and can vary significantly in the area of free space provided for settlement of marine organisms. Whilst correlation between the amount of free space available and recruitment success has been shown in populations of several marine benthic organisms, there has been relatively little focus on invasive species, a group with the potential to reproduce in vast numbers and colonise habitats rapidly. Invasion success following different scales of disturbance was examined in the invasive acorn barnacle, Austrominius modestus , on a unique art installation located in Liverpool Bay. Population growth and recruitment success were examined by comparing recruitment rates within disturbance clearings of 4 different sizes and by contrasting population development with early recruitment rates over a 10 week period. Disturbed areas were rapidly recolonised and monocultures of A . modestus formed within 6 weeks. The size of patch created during disturbance had no effect on the rate of recruitment, while a linear relationship between recruit density and patch size was observed. Density-dependent processes mediated initial high recruitment resulting in population stability after 8-10 weeks, but densities continued to greatly exceed those reported in natural habitats. Given that artificial structures are likely to continue to proliferate in light of climate change projections, free-space is likely to become more available more frequently in the future supporting the expansion of fast-colonising species.
Theories of species coexistence often describe a trade-off between colonising and competitive abilities. In sessile marine invertebrates, this trade-off can manifest as trends in species distributions relative to the size of isolated patches of substrate. Based on their abilities to find available substrate and competitively exclude neighbours, good colonisers tend to dominate smaller patches, whereas better competitors tend to monopolise larger patches. In theory, species with equivalent colonising and competitive abilities should display similar distributions across patch sizes. We used patch size to observe this manifestation of the competition-colonisation trade-off over 20° of latitude. The trade-off was more readily observed at lower latitudes and was proportional to the 'ecological age' of communities (i.e. the degree of resource acquisition and likelihood of species interactions). Results suggest that ecological age may mediate the prominence of stochastic or deterministic coexistence mechanisms and will depend on the rate of ecological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.