Methanotrophic bacteria oxidize methane (CH4) in forest soils that cover ∼30% of Earth's land surface. The first measurements for a pristine Southern Hemisphere forest are reported here. Soil CH4 oxidation rate averaged 10.5±0.6 kg CH4 ha−1 yr−1, with the greatest rates in dry warm soil (up to 17 kg CH4 ha−1 yr−1). Methanotrophic activity was concentrated beneath the organic horizon at 50–100 mm depth. Water content was the principal regulator of (r2=0.88) from the most common value of field capacity to less than half of this when the soil was driest. Multiple linear regression analysis showed that soil temperature was not very influential. However, inverse co‐variability confounded the separation of soil water and temperature effects in situ. Fick's law explained the role of water content in regulating gas diffusion and substrate supply to the methanotrophs and the importance of pore size distribution and tortuosity. This analysis also showed that the chambers used in the study did not affect the oxidation rate measurements. The soil was always a net sink for atmospheric CH4 and no net CH4 (or nitrous oxide, N2O) emissions were measured over the 17‐month long study. For New Zealand, national‐scale extrapolation of our data suggested the potential to offset 13% of CH4 emissions from ca. 90 M ruminant animals. Our average was about 6.5 times higher than rates reported for most Northern Hemisphere forest soils. This very high was attributed to the lack of anthropogenic disturbance for at least 3000–5000 years and the low rate of atmospheric nitrogen deposition. Our truly baseline data could represent a valid preagricultural, preindustrial estimate of the soil sink for temperate latitudes.
Tropospheric methane (CH 4 ) is oxidised by soil microbes called methanotrophs. We examined them in soil samples from a pristine Nothofagus forest located in New Zealand. Laboratory incubations indicated the presence of high-affinity methanotrophs that displayed Michaelis-Menton kinetics (K m = 8.4 µL/L where K m is the substrate concentration at half the maximal rate). When the soil was dried from its field capacity water content of 0.34 to 0.16 m 3 /m 3 , CH 4 oxidation rate increased nearly 7-fold. The methanotrophs were thus metabolically poised for very high activity, but substrate availability was commonly limiting. When water content was held constant, CH 4 oxidation rate nearly doubled as temperature increased from 5 to 12 • C, a range found in the forest. By contrast, CH 4 oxidation rate did not change much from 12 to 30 • C, and it was zero at 35 • C. When water content and temperature were held constant, the optimal soil pH for CH 4 oxidation was 4.4, as found in the forest. Soil disturbance by nitrogen (N) and non-N salt amendment decreased CH 4 oxidation rate, but this depended on the amendment species and concentration. The methanotrophs were adapted to native conditions and exhibited a great sensitivity to disturbance.
Electrospun nanofibers have been extensively studied for encapsulated drugs releasing from the inside of the fiber matrix, but have been barely looked at for their potential to control release as a semi-permeable membrane. This study investigated molecular transport behaviors across nanofiber membranes with different micro-structure sizes and compositions. Four types of membranes were made by 5% and 10% poly (ε-caprolactone) (PCL) solutions electro-spun with or without 50 nm calcium carbonate (CaCO3) nanoparticles. The membranes were tested for thickness, fiber diameter, pore size, porosity, tensile strength and elongation, contact angle of water and their impacts on molecular transport behaviors. The presence of the CaCO3 nanoparticles made the 5% membranes stronger and stiffer but the 10% membranes weaker and less stiff due to the different (covering or embedded) locations of the nanoparticles with the corresponding fibers. Solute transport studies using caffeine as the model drug found the 5% membranes further retarded release from the 10% membranes, regardless of only half the amount of material being used for synthesis. The addition of CaCO3 nanoparticles aided the water permeation process and accelerated initial transports. The difference in release profiles between 5% and 10% membranes suggests different release mechanisms, with membrane-permeability dominated release for 5% PCL membranes and solute-concentration-gradient dominated release for 10% PCL membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.