With the progression of nanotechnology, the use of nanoparticles (NPs) in consumer products has increased dramatically and green synthesis is one of the cheapest and eco-friendly methods to obtain non-hazardous NPs. In the current research zinc (Zn) NPs synthesis was carried out by using the fresh and healthy leaves of Mentha arvensis L. followed by characterisation through ultraviolet (UV)-visible spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). UV-visible spectroscopy confirmed the green synthesis of ZnNPs, while XRD confirmed the size of NPs, which was 30-70 nm. SEM shows that the shape of ZnNPs was irregular. The effects of green synthesised NPs on two different varieties of Brassica napus were evaluated. Exposure to ZnNPs (5, 15, and 25 mg/l −1) caused a significant increase in root and shoot length of B. napus. The application of NPs significantly improved plant germination and triggered the production of secondary metabolite and antioxidant enzymes. ZnNPs showed a significant increase in chlorophyll, superoxide dismutase, total flavonoid content (TFC) and antioxidant enzymes while total phenolic content was decreased when TFC increased. Thus, it has been concluded from the current study that ZnNPs may possibly trigger the production of antioxidant enzymes and various biochemical compounds.
Herein, a unique synthetic approach called microemulsion is used to create nickel nanoparticles (Ni-NPs). SEM, TEM, EDX, and XRD techniques were employed for the investigation of morphology and structures of the synthesized material. Electrons from electroactive components are transferred to external circuits by Ni-NPs’ superior electrical conductivity and interconnected nanostructures, which also provide a large number of channels for ion diffusion and additional active sites. The experimental findings showed that as a positive electrode for supercapacitors (SC), Ni-NPs had an outstanding ability to store charge, with a dominant capacitive charge storage of 72.4% when measured at 10 mV/s. Furthermore, at 1 A/g, Ni-NP electrodes exhibit a maximum capacitance of 730 F/g. Further, the Ni-NP electrode retains 92.4% of its capacitance even for 5000 cycles, highlighting possible applications for it in the developing field of renewable energy. The current study provides a new method for producing high-rate next-generation electrodes for supercapacitors.
Zero valent iron nanoparticles (ZV-FeNPs) have been used for the remediation of a wide variety of environmental contaminants. ZV-FeNPs were synthesized using a green method involving leaf extract of Mentha...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.