Tracking the source of air pollution plumes and monitoring the air quality during emergency events in real-time is crucial to support decision-makers in making an appropriate evacuation plan. Internet of Things (IoT) based air quality tracking and monitoring platforms have used stationary sensors around the environment. However, fixed IoT sensors may not be enough to monitor the air quality in a vast area during emergency situations. Therefore, many applications consider utilizing Unmanned Aerial Vehicles (UAVs) to monitor the air pollution plumes environment. However, finding an unhealthy location in a vast area requires a long navigation time. For time efficiency, we employ deep reinforcement learning (Deep RL) to assist UAVs to find air pollution plumes in an equal-sized grid space. The proposed Deep Q-network (DQN) based UAV Pollution Tracking (DUPT) is utilized to guide the multi-navigation direction of the UAV to find the pollution plumes’ location in a vast area within a short duration of time. Indeed, we deployed a long short-term memory (LSTM) combined with Q-network to suggest a particular navigation pattern producing minimal time consumption. The proposed DUPT is evaluated and validated using an air pollution environment generated by a well-known Gaussian distribution and kriging interpolation. The evaluation and comparison results are carefully presented and analyzed. The experiment results show that our proposed DUPT solution can rapidly identify the unhealthy polluted area and spends around 28% of the total time of the existing solution.
The Internet of Things (IoT)-based target tracking system is required for applications such as smart farm, smart factory, and smart city where many sensor devices are jointly connected to collect the moving target positions. Each sensor device continuously runs on battery-operated power, consuming energy while perceiving target information in a particular environment. To reduce sensor device energy consumption in real-time IoT tracking applications, many traditional methods such as clustering, information-driven, and other approaches have previously been utilized to select the best sensor. However, applying machine learning methods, particularly deep reinforcement learning (Deep RL), to address the problem of sensor selection in tracking applications is quite demanding because of the limited sensor node battery lifetime. In this study, we proposed a long short-term memory deep Q-network (DQN)-based Deep RL target tracking model to overcome the problem of energy consumption in IoT target applications. The proposed method is utilized to select the energy-efficient best sensor while tracking the target. The best sensor is defined by the minimum distance function (i.e., derived as the state), which leads to lower energy consumption. The simulation results show favorable features in terms of the best sensor selection and energy consumption.
The Internet of things (IoT) combines different sources of collected data which are processed and analyzed to support smart city applications. Machine learning and deep learning algorithms play a vital role in edge intelligence by minimizing the amount of irrelevant data collected from multiple sources to facilitate these smart city applications. However, the data collected by IoT sensors can often be noisy, redundant, and even empty, which can negatively impact the performance of these algorithms. To address this issue, it is essential to develop effective methods for detecting and eliminating irrelevant data to improve the performance of intelligent IoT applications. One approach to achieving this goal is using data cleaning techniques, which can help identify and remove noisy, redundant, or empty data from the collected sensor data. This paper proposes a deep reinforcement learning (deep RL) framework for IoT sensor data cleaning. The proposed system utilizes a deep Q-network (DQN) agent to classify sensor data into three categories: empty, garbage, and normal. The DQN agent receives input from three received signal strength (RSS) values, indicating the current and two previous sensor data points, and receives reward feedback based on its predicted actions. Our experiments demonstrate that the proposed system outperforms a common time-series-based fully connected neural network (FCDQN) solution, with an accuracy of around 96% after the exploration mode. The use of deep RL for IoT sensor data cleaning is significant because it has the potential to improve the performance of intelligent IoT applications by eliminating irrelevant and harmful data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.