The Electron Cyclotron Drift Instability (ECDI) driven by the electron E × B drift in partially magnetized plasmas is investigated with highly resolved particle-in-cell simulations. The emphasis is on two-dimensional effects involving the parallel dynamics along the magnetic field in a finite length plasma with dielectric walls. It is found that the instability develops as a sequence of growing cyclotron harmonics demonstrating wave breaking and complex nonlinear interactions, being particularly pronounced in ion density fluctuations at short wavelengths. At the same time, nonlinear evolution of fluctuations of the ion and electron density, as well as the anomalous electron current, shows cascade toward long wavelengths. Tendency to generate long wavelength components is most clearly observed in the spectra of the electron density and the anomalous current fluctuations. An intense but slowly growing mode with a distinct eigen-mode structure along the magnetic field develops at a later nonlinear stage enhancing the tendency toward long wavelength condensation. The latter mode having a finite wavelength along the magnetic field is identified as the Modified Two-Stream Instability (MTSI). It is shown that the MTSI mode results in strong parallel heating of electrons.
A cross-comparison and verification of state-of-the-art European codes describing gradient-driven plasma turbulence in the core and edge regions of tokamaks, carried out within the EFDA Task Force on Integrated Tokamak Modelling, is presented. In the case of core ion temperature gradient (ITG) driven turbulence with adiabatic electrons (neglecting trapped particles), good/reasonable agreement is found between various gyrokinetic/gyrofluid codes. The main physical reasons for some deviations observed in nonlocal simulations are discussed.The edge simulations agree very well on collisionality scaling and acceptably well on beta scaling (below the MHD boundary) for cold-ion cases, also in terms of the non-linear mode structure.
Direct measurements of micro-, meso-, and macroscale transport phenomena in the FT-2 tokamak are shown to be quantitatively reproduced by global full f nonlinear gyrokinetic simulation predictions. A detailed agreement with mean equilibrium E×B flows, oscillating fine-scale zonal flows, and turbulence spectra observed by a set of sophisticated microwave backscattering techniques as well as a good fit of the thermal diffusivity data are demonstrated. A clear influence of the impurity ions on the fluctuating radial electric field is observed.
Nonlinear dynamics of the electron-cyclotron instability driven by the electron E × B current in crossed electric and magnetic field is studied. In nonlinear regime the instability proceeds by developing a large amplitude coherent wave driven by the energy input from the fundamental cyclotron resonance. Further evolution shows the formation of the long wavelength envelope akin to the modulational instability. Simultaneously, the ion density shows the development of high-k content responsible for wave focusing and sharp peaks on the periodic cnoidal wave structure. It is shown that the anomalous electron transport (along the direction of the applied electric field) is dominated by the long wavelength part of the turbulent spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.