Halloysite nanotubes (HNTs) with immobilized gold (Au) and silver (Ag) nanoparticles (NPs) belong to a class of nanocomposite materials whose physical properties and applications depend on the geometry of arrangements of the plasmonic nanoparticles on HNT’ surfaces. We explore HNTs:(Au, Ag)-NPs as potential nano-templates for surface-enhanced Raman scattering (SERS). The structure and plasmonic properties of nanocomposites based on HNTs and Au- and Ag-NPs are studied by means of the transmission electron microscopy and optical spectroscopy. The optical extinction spectra of aqueous suspensions of HNTs:(Au, Ag)-NPs and spatial distributions of the electric fields are simulated, and the simulation results demonstrate the corresponding localized plasmonic resonances and numerous “hot spots” of the electric field nearby those NPs. In vitro experiments reveal an enhancement of the protein SERS in fibroblast cells with added HNTs:Ag-NPs. The observed optical properties and SERS activity of the nanocomposites based on HNTs and plasmonic NPs are promising for their applications in biosensorics and biophotonics.
Silicon nanowires (SiNWs) prepared by metal-assisted chemical etching of crystalline silicon wafers followed by deposition of plasmonic gold (Au) nanoparticles (NPs) were explored as templates for surface-enhanced Raman scattering (SERS) from probe molecules of Methylene blue and Rhodamine B. The filling factor by pores (porosity) of SiNW arrays was found to control the SERS efficiency, and the maximal enhancement was observed for the samples with porosity of 55%, which corresponded to dense arrays of SiNWs. The obtained results are discussed in terms of the electromagnetic enhancement of SERS related to the localized surface plasmon resonances in Au-NPs on SiNW’s surfaces accompanied with light scattering in the SiNW arrays. The observed SERS effect combined with the high stability of Au-NPs, scalability, and relatively simple preparation method are promising for the application of SiNW:Au-NP hybrid nanostructures as templates in molecular sensorics.
Аннотация. В данной работе рассматривается оптоэлектронные свойства пористого наноструктурированного кремния, полученного методом электрохимического травления. Было отмечено, что концентрация электролита влияет на глубину пористости, а плотность тока анодирования влияет на плотность и размер кристаллитов, также на спектры фотолюминесценции. Результаты Рамановского измерения показали, низкочастотный сдвиг волнового числа на линии 504 см -1 , что изменяет разность частот Δω до 16 см -1 единиц волнового числа, при этом диаметр поперечного сечения нанокристаллитов распределяется от 2,3 нм до 4,3 нм.Ключевые слова: кремний, пористый кремний, наноструктуры, плотность тока анодизации, фотолюминесценция, сдвиг Рамановского спектра, коэффициент пропускания света. Рисунок 4. Рамановский спектр образца пористого кремния, полученного при 10 мА/см 2 -15 мин в электролите HF: C4H10O2 -1: 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.