Frequent monitoring of temperature (FMT) for over 1 year at two aquaculture sites in the western Baja California peninsula was analysed in terms of hourly, daily and monthly variability, and with this information, temperature‐change indices were calculated. These data were contrasted against a long‐term series from a global database (Extended Reconstruction of Sea Surface Temperature (ERSST)) to evaluate whether these could substitute for FMT. The compatibility of species requirements with the thermal conditions was evaluated by comparing the temperature frequency distributions from the two FMTs, with the optimum and lethal temperature information available on five bivalve species of aquacultural interest. We concluded that there was no correlation between ERSST and FMT because the former underestimates the amplitude of real temperature fluctuations and exhibits a different pattern of variation during the year. Therefore, FMT was needed for a correct selection of an aquaculture site for bivalves. The FMT indicated high temperature variability at both sites studied on different time scales, with the site located at lower latitude (Rancho Bueno) warmer and with a higher variability than Laguna Manuela. Contrasting these results with optimum and lethal temperature values of bivalve species, it was possible to find the ideal site, for temperature, for culturing the species, taking into account the variability associated with large‐scale phenomena.
RESUMENLos cambios de temperatura promedio del océano a nivel global tienen el potencial de afectar negativamente los sistemas naturales y socioeconómicos actuales; sin embargo, los registros para proyectar las tendencias de cambio a nivel regional son escasos y, en algunos casos, contradictorios. En este estudio se analizan las señales de cambio de la temperatura superficial en mares mexicanos, y se comparan con otras regiones del planeta y con indicadores climáticos clave, tanto del Pacífico Norte como de la franja tropical en el Atlántico y el Pacífico. Se identificaron ocho regiones con diferente exposición a la variabilidad climática: en el Pacífico, la costa occidental de la península de Baja California no muestra una tendencia clara, el Golfo de California exhibe una tendencia modesta de enfriamiento durante los últimos 20 a 25 años, en la parte más oceánica del Pacífico mexicano se nota una tendencia intensa de enfriamiento, la región más tropical muestra una tendencia intensa de calentamiento, y entre ambas regiones se forma una banda de transición sin tendencia; en el Atlántico, la parte noreste del Golfo de México muestra una tendencia de enfriamiento, en tanto que la parte oeste, junto con el Caribe, se han estado calentando por lo menos durante los últimos 30 años. Se analizan las interacciones potenciales de estas tendencias con algunas pesquerías principales y la presencia de ecosistemas costeros sensibles. ABSTRACTChanges in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change signals in the seas off Mexico is presented and compared to other regions and the world ocean, and to selected basin scale climatic indices of the North Pacific, the Atlantic and the tropical Pacific variability. We identified eight regions with 538 S. E. Lluch-Cota et al. different exposure to climate variability: In the Pacific, the west coast of the Baja California peninsula with mostly no trend, the Gulf of California with a modest cooling trend during the last 20 to 25 years, the oceanic area with the most intense recent cooling trend, the southern part showing an intense warming trend, and a band of no trend setting the boundary between North-Pacific and tropical-Pacific variability patterns; in the Atlantic, the northeast Gulf of Mexico shows cooling, while the western Gulf of Mexico and the Caribbean have been warming for more than three decades. Potential interactions with fisheries and coastal sensitive ecosystems are discussed.
Interannual variability in the California Current System is analyzed through its effects on the temporal distribution of fauna, particularly southern-origin organisms moving north during warming events and south during cooling ones. In temperate waters north of 24°N latitude, northward movements of southern fauna occur at intervals of about 5 yr. This is different from El Niñ o events, whose frequency of occurrence is mostly centered in the 3-yr period but with considerable dispersion. Possible causes for northward displacement of fauna include relaxation of the California Current, intensification of the countercurrent, and the formation and persistence of mesoscale eddies among others. Strong events appear to be a consequence of the decadal variation peaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.