This work was undertaken to analyze the ripening process of avocados variety Hass (Persea americana Mill.) by image processing (IP) methodology. A set of avocados (10 samples) was used to follow the changes in image features during ripening by applying a computer vision system, extracting color and textural parameters. Other 16 avocados were used to evaluate the firmness and mass loss. Three maturity stages of avocados were established, and a classification was obtained by applying principal component analysis and k-nearest neighbor algorithm. During the ripening process (12 days), avocado firmness decreased from 75.43 to 2.63 N, while skin color values kept invariable during 6 days; after that, a decrement in the peel green color (a*) was observed (−9.68 to 2.32). Image features showed that during ripening the color parameters (L*, a*, and b*), entropy (4.29 to 4.00), angular second moment (0.287 to 0.360), and fractal dimension (2.58 to 2.44) had a similar path as compared to mass loss, a*, and firmness ripening parameters, respectively. Relationships between image features and ripening parameters were obtained. The parameter a* was the most useful digital feature to establish an acceptable percentage of avocado classification (>80%) in three different maturity stages found. Results obtained by means of IP could be useful to evaluate, at laboratory level, the ripening process of the avocados.
In this paper a coarse-grain execution model for evolutionary algorithms is proposed and used for solving numerical and combinatorial optimization problems. This model does not use migration as the solution dispersion mechanism, in its place a more efficient population-merging mechanism is used that dynamically reduces the population size as well as the total number of parallel evolving populations. Even more relevant is the fact that the proposed model incorporates an entropy measure to determine how to merge the populations such that no valuable information is lost during the evolutionary process. Extensive experimentation, using genetic algorithms over a well-known set of classical problems, shows the proposed model to be faster and more accurate than the traditional one.
The last few years have seen an important increase in research publications dealing with external typical testor-finding algorithms, while internal ones have been almost forgotten or modified to behave as external on the basis of their alleged poor performance. In this research we present a new internal typical testor-finding algorithm called YYC that incrementally calculates typical testors for the currently analized set of basic matrix rows by searching for compatible sets. The experimentally measured performance of this algorithm stands out favorably in problems where other external algorithms show very low performance. Also, a comparative analysis of its efficiency is done against some external typical testor-finding algorithms published during the last few years.
Although the general relevance of Testor Theory as the theoretical ground for useful feature selection procedures is well known, there are no practical means, nor any standard methodologies, for assessing the behavior of a testor-finding algorithm when faced with specific circumstances. In this work, we present a practical framework, with proven theoretical foundation, for assessing the behavior of both deterministic and meta-heuristic testor-finding algorithms when faced with specific phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.