Papaya production plays an important economic role in Mexico’s economy. After harvest, it continues to ripen, leading to softening, skin color changes, development of strong aroma, and microbial spoilage. The objective of this work was to apply an active coating of chitosan–starch to increase papaya shelf life and to evaluate physicochemical and antimicrobial properties of the coating. Papaya surfaces were coated with a chitosan-oxidized starch (1:3 w/w) solution and stored at room temperature (25 ± 1 °C) for 15 days. Variables measured were color, titratable acidity, vitamin C, pH, soluble solids, volatile compounds by gas chromatography, texture, homogeneity by image analysis, and coating antimicrobial activity. At the end of the storage time, there were no significant differences (p > 0.05) between coated and uncoated papayas for pH (4.3 ± 0.2), titratable acidity (0.12% ± 0.01% citric acid), and soluble solids (12 ± 0.2 °Bx). Papaya firmness decreased to 10 N for coated and 0.5 N for uncoated papayas. Volatile compounds identified in uncoated papaya (acetic acid, butyric acid, ethyl acetate, ethyl butanoate) are related to fermentation. Total microbial population of coated papaya decreased after 15 days, whereas population of uncoated papaya increased. This active coating permitted longer shelf life of papaya than that of the uncoated fruit.