In this paper the application of image prior combinations to the Bayesian Super Resolution (SR) image registration and reconstruction problem is studied. Two sparse image priors, a Total Variation (TV) prior and a prior based on the 1 norm of horizontal and vertical first order differences (f.o.d.), are combined with a non-sparse Simultaneous Auto Regressive (SAR) prior. Since, for a given observation model, each prior produces a different posterior distribution of the underlying High Resolution (HR) image, the use of variational approximation will produce as many posterior approximations as priors we want to combine. A unique approximation is obtained here by finding the distribution on the HR image given the observations that minimizes a linear convex combination of Kullback-Leibler (KL) divergences. We find this distribution in closed form. The estimated HR images are compared with the ones obtained by other SR reconstruction methods.
This paper is devoted to the combination of image priors in Super Resolution (SR) image reconstruction. Taking into account that each combination of a given observation model and a prior model produces a different posterior distribution of the underlying High Resolution (HR) image, the use of variational posterior distribution approximation on each posterior will produce as many posterior approximations as priors we want to combine. A unique approximation is obtained here by finding the distribution on the HR image given the observations that minimizes a linear convex combination of the Kullback-Leibler divergences associated with each posterior distribution. We find this distribution in closed form and also relate the proposed approach to other prior combination methods in the literature. The estimated HR images are compared with images provided by other SR reconstruction methods.
In this paper a new combination of image priors is introduced and applied to Super Resolution (SR) image reconstruction. A sparse image prior based on the 1 norms of the horizontal and vertical first order differences is combined with a non-sparse SAR prior. Since, for a given observation model, each prior produces a different posterior distribution of the underlying High Resolution (HR) image, the use of variational posterior distribution approximation on each posterior will produce as many posterior approximations as priors we want to combine. A unique approximation is obtained here by finding the distribution on the HR image given the observations that minimize a linear convex combination of the Kullback-Leibler (KL) divergences associated with each posterior distribution. We find this distribution in closed form. The estimated HR images are compared with images provided by other SR reconstruction methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.