The electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectra of both enantiomers of naringenin (4',5,7-trihydroxyflavanone) in acetonitrile solution have been measured. The enantiomers were obtained by chiral HPLC separation of the racemic sample. DFT calculations have been performed for relevant conformers and subsequent evaluations of VCD spectra are compared with VCD experiments: safe assignment of the absolute configuration is provided, based in particular on the VCD data. The relevance of the rotational conformers of the hydroxyl groups and of the mobility of phenol moiety is studied: based on this, we provide a first interpretation of the observed intense and broad couplet at 1325/1350 cm(-1). Four conformers contribute to this pattern with different sign and amplitude as shown by DFT calculations. Time dependent DFT calculations have been performed and compared with ECD experimental data, under the same assumption of conformational properties and mobilities investigated by VCD.
Interactions between naringenin and the cytochrome P450 (CYP) system have been of interest since the first demonstration that grapefruit juice reduced CYP3A activity. The effects of naringenin on other CYP isoforms have been less investigated. In addition, it is well known that interactions with enzymes are often stereospecific, but due to the lack of readily available, chirally pure naringenin enantiomers, the enantioselectivity of its effects has not been characterized. We isolated pure naringenin enantiomers by chiral HPLC and tested the ability of (R)-, (S)-and rac-naringenin to inhibit several important drug-metabolizing CYP isoforms using recombinant enzymes and pooled human liver microsomes. Naringenin was able to inhibit CYP19, CYP2C9 and CYP2C19 with IC50 values below 5 μM. No appreciable inhibition of CYP2B6 or CYP2D6 was observed at concentrations up to 10 μM. While (S)-naringenin was 2-fold more potent as an inhibitor of CYP19 and CYP2C19 than (R)-naringenin, (R)-naringenin was 2-fold more potent for CYP2C9 and CYP3A. Chiral flavanones like naringenin are difficult to separate into their enantiomeric forms, but enantioselective effects may be observed that ultimately impact clinical effects. Inhibition of specific drug metabolizing enzymes by naringenin observed in vitro may be exploited to understand pharmacokinetic changes seen in vivo.
The non-empirical assignment of the absolute configuration of (-)-naringenin, the aglycone of (-)-naringin, a flavanone glycoside abundant in the albedo of immature grapefruits and showing several interesting biological properties, has been approached by two different methods: (a) the exciton analysis of the circular dichroism (CD) spectrum and (b) the ab initio calculation of the optical rotatory power. Both the methods indicate the configurational correlation (-)/(S), as empirically suggested by Gaffield. A comparison of advantages and limitations of the two methods of analysis is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.