One of the main challenges to exploit molybdenum disulfide (MoS) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS surface can be tailored at nanoscale using soft O plasma treatments. The morphological, chemical, and electrical modifications of MoS surface under different plasma conditions were investigated by several microscopic and spectroscopic characterization techniques, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), conductive AFM (CAFM), aberration-corrected scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). Nanoscale current-voltage mapping by CAFM showed that the SBH maps can be conveniently tuned starting from a narrow SBH distribution (from 0.2 to 0.3 eV) in the case of pristine MoS to a broader distribution (from 0.2 to 0.8 eV) after 600 s O plasma treatment, which allows both electron and hole injection. This lateral inhomogeneity in the electrical properties was associated with variations of the incorporated oxygen concentration in the MoS multilayer surface, as shown by STEM/EELS analyses and confirmed by ab initio density functional theory (DFT) calculations. Back-gated multilayer MoS FETs, fabricated by self-aligned deposition of source/drain contacts in the O plasma functionalized areas, exhibit ambipolar current transport with on/off current ratio I/I ≈ 10 and field-effect mobilities of 11.5 and 7.2 cm V s for electrons and holes, respectively. The electrical behavior of these novel ambipolar devices is discussed in terms of the peculiar current injection mechanisms in the O plasma functionalized MoS surface.
In this paper, hydrogen bubbling delamination of graphene (Gr) from copper using a strong electrolyte (KOH) water solution was performed, focusing on the effect of the KOH concentration (CKOH) on the Gr delamination rate. A factor of ∼10 decrease in the time required for the complete Gr delamination from Cu cathodes with the same geometry was found increasing CKOH from ∼0.05 M to ∼0.60 M. After transfer of the separated Gr membranes to SiO2 substrates by a highly reproducible thermo-compression printing method, an accurate atomic force microscopy investigation of the changes in Gr morphology as a function of CKOH was performed. Supported by these analyses, a microscopic model of the delamination process has been proposed, where a key role is played by graphene wrinkles acting as nucleation sites for H2 bubbles at the cathode perimeter. With this approach, the H2 supersaturation generated at the electrode for different electrolyte concentrations was estimated and the inverse dependence of td on CKOH was quantitatively explained. Although developed in the case of Cu, this analysis is generally valid and can be applied to describe the electrolytic delamination of graphene from several metal substrates.
The temperature dependence of the specific resistance ρc in annealed Ti∕Al∕Ni∕Au contacts on n-type GaN was monitored, obtaining information on the current transport mechanisms. After annealing at 600°C, the contacts exhibited a rectifying behavior and became Ohmic only after high temperature processes (>700°C), with ρc in the low 10−5Ωcm2 range. The results demonstrated that the current transport is ruled by two different mechanisms: thermoionic field emission occurs in the contacts annealed at 600°C, whereas field emission dominates after higher temperature annealing. The significant physical parameters related to the current transport, i.e., the Schottky barrier height and the carrier concentration under the contact, could be determined. In particular, a reduction of the Schottky barrier from 1.21eV after annealing at 600°Cto0.81eV at 800°C was determined, accompanied by a strong increase of the carrier concentration, i.e., from 2×1018cm−3 in the as-prepared sample to 4.6×1019cm−3 in the annealed contacts. The electrical properties were correlated to the microstructure of the interfacial region, providing a scenario to explain the transition from Schottky to Ohmic behavior in annealed Ti∕Al∕Ni∕Au contacts.
In this letter, high responsivity 4H-SiC vertical Schottky UV photodiodes based on the pinch-off surface effect, obtained by means of self-aligned Ni2Si interdigit contacts, are demonstrated. The diode area was 1mm2, with a 37% directly exposed to the radiation. The dark current was about 200pA at −50V. Under a 256nm UV illumination, a current increase of more than two orders of magnitude is observed, resulting in a 78% internal quantum efficiency. The vertical photodiodes showed an ultraviolet-visible rejection ratio >7×103 and a responsivity a factor of about 1.8 higher than a conventional planar metal-semiconductor-metal structure.
The results of a new epitaxial process using an industrial 6x2” wafer reactor with the introduction of HCl during the growth have been reported. A complete reduction of silicon nucleation in the gas phase has been observed even for high silicon dilution parameters (Si/H2>0.05) and an increase of the growth rate until about 20 µm/h has been measured. No difference has been observed in terms of defects, doping uniformity (average maximum variation 8%) and thickness uniformity (average maximum variation 1.2 %) with respect to the standard process without HCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.