Chronic obstructive pulmonary disease (COPD) is a disabling condition that is characterised by poorly reversible airflow limitation and inflammation. Acute exacerbations of COPD are a common cause of hospitalisation and death among COPD patients. Several biochemical markers have been studied as outcome predictors in COPD; however, their measurement often requires significant time and resources. Relatively simple biomarkers of inflammation calculated from routine complete blood count tests, such as the neutrophil to lymphocyte ratio (NLR), might also predict COPD progression and outcomes. This review discusses the available evidence from studies investigating the associations between the NLR, COPD exacerbations and death in this patient group.
IntroductionIdiopathic pulmonary fibrosis (IPF), a fatal lung disease of unknown origin, is characterized by chronic and progressive fibrosing interstitial pneumonia which progressively impairs lung function. Oxidative stress is one of the main pathogenic pathways in IPF. The aim of this systematic review was to describe the type of markers of oxidative stress identified in different biological specimens and the effects of antioxidant therapies in patients with IPF.MethodsWe conducted a systematic search of publications listed in electronic databases (Pubmed, Web of Science, Scopus and Google Scholar) from inception to October 2017. Two investigators independently reviewed all identified articles to determine eligibility.ResultsAfter a substantial proportion of the initially identified articles (n = 554) was excluded because they were duplicates, abstracts, irrelevant, or did not meet the selection criteria, we identified 30 studies. In each study, we critically appraised the type, site (systemic vs. local, e.g. breath, sputum, expired breath condensate, epithelial lining fluid, bronchoalveolar lavage, and lung tissue specimens), and method used for measuring the identified oxidative stress biomarkers. Furthermore, the current knowledge on antioxidant therapies in IPF was summarized.ConclusionsA number of markers of oxidative stress, with individual advantages and limitations, have been described in patients with IPF. Nevertheless, trials of antioxidant treatments have been unable to demonstrate consistent benefits, barring recent pharmacogenomics data suggesting different results in specific genotype subgroups of patients with IPF.
High concentrations of total plasma thiols such as cysteine and homocysteine are important risk factors for atherosclerosis and cardiovascular diseases. We have recently described a new laser-induced fluorescence capillary electrophoresis (CE-LIF) method to measure total plasma thiols, in which the baseline separation of cysteinylglycine, homocysteine, cysteine, and glutathione was achieved by adding the organic base N-methyl-D-glucamine to the run buffer. However, because the active fractions of homocysteine and cysteine responsible for vascular injuries are still unknown, research calls for a set up of methods able to analyze different forms of plasma thiols. In this paper, we present an improvement of our previous method that allows the measurement of different thiol forms. Total, reduced, and free thiols were measured by varying the order of disulfide reduction with tributylphosphine and proteins precipitation with 5-sulfosalicylic acid. After derivatization with 5-iodoacetamidofluorescein, samples were separated and measured by CE-LIF using a phosphate/borate buffer in the presence of 75 mmol/L N-methyl-D-glucamine. Oxidized thiols and protein bound thiols were calculated by difference, free minus reduced and total minus free form, respectively. Linearity, reproducibility, analytical recovery, and sensitivity were evaluated. The assay was used to measure the thiols redox status in 15 plasma samples from healthy volunteers.
Chronic obstructive pulmonary disease (COPD) and asthma are both characterized by heterogeneous chronic airway inflammation and obstruction as well as oxidative stress (OS). However, it is unknown whether OS occurs in early disease and how to best assess its presence. Plasma OS markers (TBARS, PSH, taurine, GSH, ergothioneine and paraoxonase 1 activity) and lung function tests were measured in patients with mild stable asthma (n = 24) and mild stable COPD (n = 29) and in age- and sex-matched controls. Forced expiratory volume in 1 s (FEV1 ) was associated with age both in patients and control groups. By contrast, FEV1 was positively correlated with PSH only in COPD (ρ = 0·49, P = 0·007). In multiple logistic regression analysis, lower PSH was the only OS marker independently associated with increased odds of both asthma (OR = 0·32, 95% CI 0·13-0·78, P = 0·01) and COPD (OR = 0·50, 95% CI 0·26-0·95, P = 0·03). These findings suggest that proteins -SH are a sensitive OS marker in early COPD and asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.