This work develops a rigorous setting allowing one to prove several features related to the behaviour of the Heisenberg-Ising (or XXZ) spin-1/2 chain at finite temperature T . Within the quantum inverse scattering method the physically pertinent observables at finite T , such as the per-site free energy or the correlation length, have been argued to admit integral representations whose integrands are expressed in terms of solutions to auxiliary non-linear integral equations. The derivation of such representations was based on numerous conjectures: the possibility to exchange the infinite volume and the infinite Trotter number limits, the existence of a real, non-degenerate, maximal in modulus Eigenvalue of the quantum transfer matrix, the existence and uniqueness of solutions to the auxiliary non-linear integral equations, as well as the possibility to take the infinite Trotter number limit on their level. We rigorously prove all these conjectures for temperatures large enough. As a by product of our analysis, we obtain the large-T asymptotic expansion for a subset of sub-dominant Eigenvalues of the quantum transfer matrix and thus of the associated correlation lengths. This result was never obtained previously, not even on heuristic grounds. 1
In this paper, the underlying principles about the theory of relativity are briefly introduced and reviewed. The mathematical prerequisite needed for the understanding of general relativity and of Einstein field equations are discussed. Concepts such as the principle of least action will be included and its explanation using the Lagrange equations will be given. Where possible, the mathematical details and rigorous analysis of the subject has been given in order to ensure a more precise and thorough understanding of the theory of relativity. A brief mathematical analysis of how to derive the Einstein's field's equations from the Einstein-Hilbert action and the Schwarzschild solution was also given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.