Atmospheric methane removal (e.g.
in situ
methane oxidation to carbon dioxide) may be needed to offset continued methane release and limit the global warming contribution of this potent greenhouse gas. Because mitigating most anthropogenic emissions of methane is uncertain this century, and sudden methane releases from the Arctic or elsewhere cannot be excluded, technologies for methane removal or oxidation may be required. Carbon dioxide removal has an increasingly well-established research agenda and technological foundation. No similar framework exists for methane removal. We believe that a research agenda for negative methane emissions—‘removal' or atmospheric methane oxidation—is needed. We outline some considerations for such an agenda here, including a proposed Methane Removal Model Intercomparison Project (MR-MIP).
This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Mitigating climate change requires a diverse portfolio of technologies and approaches, including negative emissions or removal of greenhouse gases. Previous literature focuses primarily on carbon dioxide removal, but methane removal may be an important complement to future efforts. Methane removal has at least two key benefits: reducing temperature more rapidly than carbon dioxide removal and improving air quality by reducing surface ozone concentration. While some removal technologies are being developed, modelling of their impacts is limited. Here, we conduct the first simulations using a methane emissions-driven Earth System Model to quantify the climate and air quality co-benefits of methane removal, including different rates and timings of removal. We define a novel metric, the effective cumulative removal, and use it to show that each effective petagram of methane removed causes a mean global surface temperature reduction of 0.21 ± 0.04°C and a mean global surface ozone reduction of 1.0 ± 0.2 parts per billion. Our results demonstrate the effectiveness of methane removal in delaying warming thresholds and reducing peak temperatures, and also allow for direct comparisons between the impacts of methane and carbon dioxide removal that could guide future research and climate policy.
This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Emission metrics, a crucial tool in setting effective exchange rates between greenhouse gases, currently require an arbitrary choice of time horizon. Here, we propose a novel framework to calculate the time horizon that aligns with scenarios achieving a specific temperature goal. We analyze the Intergovernmental Panel on Climate Change Special Report on Global Warming of 1.5 °C Scenario Database to find that time horizons aligning with the 1.5 °C and 2 °C global warming goals of the Paris Agreement are 24 [90% prediction interval: 7, 41] and 58 [90% PI: 41, 74] years, respectively. We then use these time horizons to quantify time-dependent emission metrics for methane. We find that the Global Warming Potential (GWP) values that align with the 1.5 °C and 2 °C goals are GWP1.5 °C = 75 [90% PI: 54, 107] and GWP2 °C = 42 [90% PI: 35, 54]. For the Global Temperature change Potential (GTP) they are GTP1.5 °C = 41 [90% PI: 16, 102] and GTP2 °C = 9 [90% PI: 7, 16]. The most commonly used time horizon, 100 years, underestimates methane’s GWP and GTP by 34% and 38%, respectively, relative to the values we calculate that align with the 2 °C goal and by 63% and 87%, respectively, relative to the 1.5 °C goal. To best align emission metrics with the Paris Agreement 1.5 °C goal, we recommend a 24 year time horizon, using 2045 as the endpoint time, with its associated GWP1.5 °C = 75 and GTP1.5 °C = 41.
Fossil CO2 emissions in 2021 grew an estimated 4.2% (3.5%–4.8%) to 36.2 billion metric tons compared with 2020, pushing global emissions back close to 2019 levels (36.7 Gt CO2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.