It is well known that different solution strategies work well for different types of instances of hard combinatorial problems. As a consequence, most solvers for the propositional satisfiability problem (SAT) expose parameters that allow them to be customized to a particular family of instances. In the international SAT competition series, these parameters are ignored: solvers are run using a single default parameter setting (supplied by the authors) for all benchmark instances in a given track. While this competition format rewards solvers with robust default settings, it does not reflect the situation faced by a practitioner who only cares about performance on one particular application and can invest some time into tuning solver parameters for this application. The new Configurable SAT Solver Competition (CSSC) compares solvers in this latter setting, scoring each solver by the performance it achieved after a fully automated configuration step. This article describes the CSSC in more detail, and reports the results obtained in its two instantiations so far, CSSC 2013 and 2014.
Cloud services provide the ability to provision virtual networked infrastructure on demand over the Internet. The rapid growth of these virtually provisioned cloud networks has increased the demand for automated reasoning tools capable of identifying misconfigurations or security vulnerabilities. This type of automation gives customers the assurance they need to deploy sensitive workloads. It can also reduce the cost and time-to-market for regulated customers looking to establish compliance certification for cloud-based applications. In this industrial case-study, we describe a new network reachability reasoning tool, called Tiros, that uses off-the-shelf automated theorem proving tools to fill this need. Tiros is the foundation of a recently introduced network security analysis feature in the Amazon Inspector service now available to millions of customers building applications in the cloud. Tiros is also used within Amazon Web Services (AWS) to automate the checking of compliance certification and adherence to security invariants for many AWS services that build on existing AWS networking features.
Abstract-We describe an efficient way to compose SAT solvers into chains, while still allowing unit propagation between those solvers. We show how such a "SAT Modulo SAT" solver naturally produces sequence interpolants as a side effect -there is no need to generate a resolution proof and post-process it to extract an interpolant. We have implemented a version of IC3 using this SAT Modulo SAT solver, which solves both more SAT instances and more UNSAT instances than PDR and IC3 on each of the 2008, 2010, and 2012 Hardware Model Checking Competition benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.