Ground reaction forces (GRFs) describe how runners interact with their surroundings and provide the basis for computing inverse dynamics. Wearable technology can predict time−continuous GRFs during walking and running; however, the majority of GRF predictions examine level ground locomotion. The purpose of this manuscript was to predict vertical and anterior–posterior GRFs across different speeds and slopes. Eighteen recreationally active subjects ran on an instrumented treadmill while we collected GRFs and plantar pressure. Subjects ran on level ground at 2.6, 3.0, 3.4, and 3.8 m/s, six degrees inclined at 2.6, 2.8, and 3.0 m/s, and six degrees declined at 2.6, 2.8, 3.0, and 3.4 m/s. We estimated GRFs using a set of linear models and a recurrent neural network, which used speed, slope, and plantar pressure as inputs. We also tested eliminating speed and slope as inputs. The recurrent neural network outperformed the linear model across all conditions, especially with the prediction of anterior–posterior GRFs. Eliminating speed and slope as model inputs had little effect on performance. We also demonstrate that subject−specific model training can reduce errors from 8% to 3%. With such low errors, researchers can use these wearable−based GRFs to understand running performance or injuries in real−world settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.