To investigate the failure of the poly(dimethylsiloxane) polymer (PDMS) at high temperatures and pressures and in the presence of various additives, we have expanded the ReaxFF reactive force field to describe carbon-silicon systems. From molecular dynamics (MD) simulations using ReaxFF we find initial thermal decomposition products of PDMS to be CH3 radical and the associated polymer radical, indicating that decomposition and subsequent cross-linking of the polymer is initiated by Si-C bond cleavage, in agreement with experimental observations. Secondary reactions involving these CH3 radicals lead primarily to formation of methane. We studied temperature and pressure dependence of PDMS decomposition by following the rate of production of methane in the ReaxFF MD simulations. We tracked the temperature dependency of the methane production to extract Arrhenius parameters for the failure modes of PDMS. Furthermore, we found that at increased pressures the rate of PDMS decomposition drops considerably, leading to the formation of fewer CH 3 radicals and methane molecules. Finally, we studied the influence of various additives on PDMS stability. We found that the addition of water or a SiO2 slab has no direct effect on the short-term stability of PDMS, but addition of reactive species such as ozone leads to significantly lower PDMS decomposition temperature. The addition of nitrogen monoxide does not significantly alter the degradation temperature but does retard the initial production of methane and C 2 hydrocarbons until the nitrogen monoxide is depleted. These results, and their good agreement with available experimental data, demonstrate that ReaxFF provides a useful computational tool for studying the chemical stability of polymers.
We have developed a reactive force field (ReaxFF MgH ) for magnesium and magnesium hydride systems. The parameters for this force field were derived from fitting to quantum chemical (QM) data on magnesium clusters and on the equations of states for condensed phases of magnesium metal and magnesium hydride crystal. The force field reproduces the QM-derived cell parameters, density, and the equations of state for various pure Mg and MgH 2 crystal phases as well as and bond dissociation, angle bending, charge distribution, and reaction energy data for small magnesium hydride clusters. To demonstrate one application of ReaxFF MgH , we have carried out MD simulations on the hydrogen absorption/desorption process in magnesium hydrides, focusing particularly on the size effect of MgH 2 nanoparticles on H 2 desorption kinetics. Our results show a clear relationship between grain size and heat of formation of MgH 2 ; as the particle size decreases, the heat of formation increases. Between 0.6 and 2.0 nm, the heat of formation ranges from -16 to -19 kcal/Mg and diverges toward that of the bulk value (-20.00 kcal/Mg) as the particle diameter increases beyond 2 nm. Therefore, it is not surprising to find that Mg nanoparticles formed by ball milling (20-100 nm) do not exhibit any significant change in thermochemical properties.
This is the Final
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.