Microwave heating (MHM) and mutated sol-gel (SGM) mechanisms were used to effectively create CuO samples with two dissimilar morphologies, such as nanoparticles (CuO-NPs) and nanorods (CuO-NRs), using Mussaendafrondosalinn plant extract as the bio-reducing operator. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) investigations were used to analyze the sample's structure, pureness, and morphological characteristics. UV-Visible diffuse reflectance (DRS) and photoluminescence (PL) spectroscopy methodologies were used to analyze optical properties and calculate bandgap energy. The bandgap of the samples was measured using the Kubelka-Munk mechanism, and it was found to be 2.74eV and 2.33eV for CuO-NPs and CuO-NRs, correspondingly. CuO-NPs and CuO-NRs were investigated for antibacterial activity versus each Gram-positive and Gram-negative microorganisms using a modified disc diffusion method. When correlated to the sample CuO nanorods, the antibacterial study confirms that the sample CuO nanoparticles are high-grade antibacterial agents. Using solar lighting, the photocatalytic activity of CuO nano-reactants (CuO-NPs and CuO-NRs) for the degradation of methylene blue (MB) dye was investigated, and the findings revealed that CuO-NPs with tinier particle sizes degraded MB more than CuONRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.