Phenotypic polymorphism can constitute an inherent challenge for species delimitation. This issue is exemplified in bumble bees (Bombus), where species can exhibit high colour variation across their range, but otherwise exhibit little morphological variation to distinguish them from close relatives. We examine the species status of one of the most abundant North American bumble bees, Bombus bifarius Cresson, which historically comprised two major taxa, bifarius s.s. and nearcticus. These lineages are recognized primarily by red and black variation in their mid-abdominal coloration; however, a continuum from black (nearcticus) to red (bifarius s.s.) variation has led to their historic synonymization. Integrating mitochondrial and nuclear data and whole-genome sequencing, we reveal a high level of both mitochondrial and nuclear divergence delimiting two morphologically cryptic species -the red bifarius s.s. and the colour-variable (black to red) nearcticus. Population genomic analysis supports an absence of recent genomic admixture and a strong population structure between the two clades, even in sympatry. Species distribution models predict partially differentiated niches between the genetically inferred clades with annual precipitation being a leading differentiating variable. The bifarius s.s. lineage also occupies significantly higher elevations, with regions of sympatry being among the highest elevations in nearcticus. Our data also support a subspecies-level divergence between the broadly distributed nearcticus and the island population vancouverensis. In this paper, we formally recognize the two species, Bombus bifarius Cresson and Bombus vancouverensis Cresson, the latter including the subspecies B. vancouverensis vancouverensis comb.n. and B. vancouverensis nearcticus comb.n., with vancouverensis the name bearer due to year priority.
Broadly distributed species experience divergent abiotic conditions across their ranges that may drive local adaptation. Montane systems where populations are distributed across both latitudinal and elevational gradients are especially likely to produce local adaptation due to spatial variation in multiple abiotic factors, including temperature, oxygen availability, and air density. We use whole-genome resequencing to evaluate the landscape genomics of Bombus vancouverensis Cresson (Hymenoptera: Apidae), a common montane bumble bee that is distributed throughout the western part of North America. Combined statistical approaches revealed several large windows of outlier SNPs with unusual levels of differentiation across the region and indicated that isothermality and elevation were the environmental features most strongly associated with these variants. Genes found within these regions had diverse biological functions, but included neuromuscular function, ion homeostasis, oxidative stress, and hypoxia that could be associated with tolerance of temperature, desiccation, or high elevation conditions. The whole-genome sequencing approach revealed outliers occurred in genome regions with elevated linkage disequilibrium, elevated mean FST, and low intrapopulation nucleotide diversity. Other kinds of structural variations were not widely associated with environmental predictors but did broadly match geographic separation. Results are consistent with other studies suggesting that regions of low recombination may harbor adaptive variation in bumble bees within as well as between species and refine our understanding of candidate genes that could be further investigated as possible targets of selection across the B. vancouverensis range.
Bumble bees are ecologically and economically important insect pollinators. Three abundant and widespread species in western North America, Bombus bifarius, Bombus vancouverensis, and Bombus vosnesenskii, have been the focus of substantial research relating to diverse aspects of bumble bee ecology and evolutionary biology. We present de novo genome assemblies for each of the three species using hybrid assembly of Illumina and Oxford Nanopore Technologies sequences. All three assemblies are of high quality with large N50s (> 2.2 Mb), BUSCO scores indicating > 98% complete genes, and annotations producing 13,325 - 13,687 genes, comparing favorably with other bee genomes. Analysis of synteny against the most complete bumble bee genome, Bombus terrestris, reveals a high degree of collinearity. These genomes should provide a valuable resource for addressing questions relating to functional genomics and evolutionary biology in these species.
Anthropogenic habitat disturbances can dramatically alter ecological community interactions, including host-pathogen dynamics. Recent work has highlighted the potential for habitat disturbances to alter hostassociated microbial communities, but the associations between anthropogenic disturbance, host microbiomes, and pathogens are unresolved. Amphibian skin microbial communities are particularly responsive to factors like temperature, physiochemistry, pathogen infection, and environmental microbial reservoirs. Through a eld survey on wild populations of Acris crepitans (Hylidae) and Lithobates catesbeianus (Ranidae), we assessed effects of habitat disturbance on environmental bacterial resevoirs, Batrachochytrium dendrobatidis (Bd) infection, and skin microbiome composition. We found higher measures of microbiome dispersion (a measure of community stability) in A. crepitans from more disturbed ponds, supporting the hypothesis that disturbance increases stochasticity in biological communties. We also found that habitat disturbance limited microbiome similarity between locations for both species, suggesting less bacterial exchange in more disturbed areas. Higher disturbance was associated with lower Bd prevalence for A. crepitans, which could signify suboptimal microclimates for Bd in disturbed habitats. In this system we use microbiome dispersion as a metric of population health. Combined, our ndings show that reduced microbiome stability stemming from habitat disturbance could compromise population health, even in the absence of pathogenic infection.
Understanding historical range shifts and population size variation provides an important context for interpreting contemporary genetic diversity. Methods to predict changes in species distributions and model changes in effective population size ( N e ) using whole genomes make it feasible to examine how temporal dynamics influence diversity across populations. We investigate N e variation and climate‐associated range shifts to examine the origins of a previously observed latitudinal heterozygosity gradient in the bumble bee Bombus vancouverensis Cresson (Hymenoptera: Apidae: Bombus Latreille) in western North America. We analyze whole genomes from a latitude‐elevation cline using sequentially Markovian coalescent models of N e through time to test whether relatively low diversity in southern high‐elevation populations is a result of long‐term differences in N e . We use Maxent models of the species range over the last 130,000 years to evaluate range shifts and stability. N e fluctuates with climate across populations, but more genetically diverse northern populations have maintained greater N e over the late Pleistocene and experienced larger expansions with climatically favorable time periods. Northern populations also experienced larger bottlenecks during the last glacial period, which matched the loss of range area near these sites; however, bottlenecks were not sufficient to erode diversity maintained during periods of large N e . A genome sampled from an island population indicated a severe postglacial bottleneck, indicating that large recent postglacial declines are detectable if they have occurred. Genetic diversity was not related to niche stability or glacial‐period bottleneck size. Instead, spatial expansions and increased connectivity during favorable climates likely maintain diversity in the north while restriction to high elevations maintains relatively low diversity despite greater stability in southern regions. Results suggest genetic diversity gradients reflect long‐term differences in N e dynamics and also emphasize the unique effects of isolation on insular habitats for bumble bees. Patterns are discussed in the context of conservation under climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.