Variability of rainfall in East Africa has major impacts on lives and livelihoods. From floods to droughts, this variability is important on short daily time‐scales to longer decadal time‐scales, as is apparent from the devastating effects of droughts in East Africa over recent decades. Past studies have highlighted the Congo airmass in enhancing East African rainfall. Our detailed analysis of the feature shows that days with a westerly moisture flow, bringing the Congo airmass, enhance rainfall by up to 100% above the daily mean, depending on the time of year. Conversely, there is a suppression of rainfall on days with a strong easterly flow. Days with a westerly moisture flux are in a minority in all seasons but we show that long rains with more westerly days are wetter, and that during the most‐recent decade which has had more frequent droughts (associated with the “Eastern African climate paradox”), there has been few days with such westerlies. We also investigate the influence of the Madden–Julian Oscillation (MJO) and tropical cyclones, and their interaction with the westerly flow. We show that days of westerly moisture flux are more likely during phases 3 and 4 of the MJO and when there are one or more tropical cyclones present. In addition, tropical cyclones are more likely to form during these phases of the MJO, and more likely to be coincident with westerlies when forming to the east of Madagascar. Overall, our analysis brings together many different processes that have been discussed in the literature but not yet considered in complete combination. The results demonstrate the importance of the Congo airmass on daily to climate time‐scales, and in doing so offers useful angles of investigation for future studies into prediction of East African rainfall.
SYNOPSISThe spectroscopic properties and photopolymerization activities of a mono-and tetraperester derivative of benzophenone are examined and compared with those of benzophenone. Their photopolymerization activity in methyl methacrylate ( MMA ) and a n ethoxylated bis-phenol-A diacrylate have been studied using a combination of gel permeation chromatography (GPC) , and real time Fourier transform infrared spectroscopy (RTFTIR) as well as the commercial pendulum hardness test. Using GPC analysis on the poly (methyl methacrylate) samples the tetra-t-butyl perester derivative of benzophenone is found to give a higher weight average ( M u ) and number average ( M , ) molecular weight polymer than that produced using the mono perester. For the two peresters of benzophenone photopolymerization efficiency using real time FTIR increases with increasing initiator concentration, and no self-termination is observed up to 0.75% w/w concentration with the mono perester derivative being the more efficient initiator. Similar results were obtained using the commercial pendulum hardness tester with a triacrylate/epoxyurethane acrylate resin with benzophenone exhibiting the lowest activity. Photopolymerization activities of the initiators correlate well with their spectroscopic properties. The phosphorescence quantum yield is higher for the monoperester than the tetraperester derivative and is consistent with a shorter lifetime and lower photolysis quantum yields in 2-propanol. Compared with benzophenone, phosphorescence analysis indicates that the perester groups impart a degree of charge-transfer content to the molecule which is consistent with the degree of substitution. Ketyl radical formation on microsecond flash photolysis follows the order benzophenone > mono-> tetraperester derivative and is consistent with the phosphorescence quantum yields. On nanosecond laser flash photolysis in nitrogen-saturated acetonitrile, triplettriplet absorption is extremely weak for both the perester derivatives, being stronger for the monoperester. I NTRO DUCT10 NWe recently examined the photochemistry and photopolymerization activity of t-butylperester derivatives of fluorenone.'.2 These compounds were found to initiate photopolymerization through homolytic scission at the peroxy link to give aroyloxy and tbutyloxy radicals. Analysis of the polymer by spec- troscopic methods showed that the former species was responsible for initiating free radical polymerization. Detailed studies on the photopolymerization activity of compounds of this type have shown that their efficiency depends on the absorption characteristics of the associated chromophore, 3-5 and this was confirmed in our previous study.' Using secondorder derivative UV absorption spectroscopy, poly ( methyl methacrylate) samples prepared using the t-butyl perester derivatives of fluorenone were found to contain residual photoinitiator fragments. Further studies using laser flash photolysis showed 1169
The key physical processes responsible for inner-core structural changes and associated fluctuations in the intensification rate for a recent, high-impact western North Pacific tropical cyclone that underwent rapid intensification (Nepartak, 2016) are investigated using a set of convection-permitting ensemble simulations. Fluctuations in the inner-core structure between ring-like and monopole states develop in 60% of simulations. A tangential momentum budget analysis of a single fluctuation reveals that during the ring-like phase, the tangential wind generally intensifies, whereas during the monopole phase, the tangential wind remains mostly constant. In both phases, the mean advection terms spin up the tangential wind in the boundary layer, whereas the eddy advection terms deepen the storm’s cyclonic circulation by spinning up the tangential wind between 1.5 and 4 km. Further calculations of the azimuthally-averaged, radially-integrated vertical mass flux suggest that periods of near-constant tangential wind tendency are accompanied by a weaker eyewall updraft, which is unable to evacuate all the mass converging in the boundary layer. Composite analyses calculated from 18 simulations produce qualitatively similar results to those from the single case, a finding that is also in agreement with some previous observational and modelling studies. Above the boundary layer, the integrated contribution of the eddy term to the tangential wind tendency is over 80% of the contribution from the mean term, irrespective of inner-core structure. Our results strongly indicate that to fully understand the storm’s three-dimensional evolution, the contribution of the eddies must be quantified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.