The solubility of neon, nitrogen and argon in distilled water and seawater AbstractLarge discrepancies in published neon and nitrogen solubility data limit the interpretation of oceanic measurements of these gases. We present new solubility measurements for neon, nitrogen and argon in distilled water and seawater, over a temperature range of 1-30 o C. Water was equilibrated with air at measured temperatures, salinities and pressures. Dissolved Ne concentrations were then determined by isotope dilution using a quadrupole mass spectrometer. Ratios of O 2 /N 2 /Ar were measured on a stable isotope ratio mass spectrometer, from which absolute N 2 and Ar concentrations were calculated using published O 2 solubilities. We propose new equations, fitted to the data, for the equilibrium concentrations of Ne, N 2 and Ar with estimated errors of 0.30%, 0.14% and 0.13%, respectively. The Ar results matched those of most previous researchers within 0.4%. However, the Ne and N 2 results were greater than those of Weiss (1971bWeiss ( , 1970 by 1% or more.
Research findings over the past several decades have shown that inflammation is a prominent feature of many chronic diseases, with poor diet being one likely inflammatory stimulus. Specifically, a single high-fat meal (HFM) has been suggested to increase inflammation, although there is currently no consensus with regard to the specific changes in many of the proinflammatory markers that are frequently assessed after an HFM. The aim of this systematic review was to objectively describe the postprandial timing and magnitude of changes in 5 common inflammatory markers: interleukin (IL) 6, C-reactive protein (CRP), tumor necrosis factor (TNF) a, IL-1b, and IL-8. Ten relevant databases were searched, yielding 494 results, of which 47 articles met the pre-established inclusion criteria: 1) healthy men and women aged 18-60 y, 2) consuming a single HFM ($30% fat, $500 kcal), and 3) assessing relevant inflammatory markers postmeal for $2 h. The only marker found to consistently change in the postprandial period was IL-6: on average, from a baseline of ;1.4 pg/mL, it peaked at ;2.9 pg/mL ;6 h post-HFM (an average relative change of ;100%). CRP, TNF-a, IL-1b, and IL-8 did not change significantly in 79% (23 of 29), 68% (19 of 28), 67% (2 of 3), and 75% (3 of 4) of included studies, respectively. We conclude that there is strong evidence that CRP and TNF-a are not responsive at the usual time scale observed in postprandial studies in healthy humans younger than age 60 y. However, future research should further investigate the role of IL-6 in the postprandial period, because it routinely increases even in healthy participants. We assert that the findings of this systematic review on markers of inflammation in the postprandial period will considerably aid in informing future research and advancing clinical knowledge. Adv Nutr 2017;8:213-25.
Regular aerobic exercise has numerous benefits on human physiology, arguably by serving as a hormetic stressor resulting in positive adaptations over time. It has long been known that aerobic exercise at a variety of intensities and durations induces intestinal permeability, which is a feature of many pathologies of the gastrointestinal tract and metabolic diseases. Given the health benefits of exercise, it seems unlikely that intestinal permeability induced by exercise outweighs the positive adaptations. In fact, a growing body of evidence suggests adoption of exercise regimens lasting weeks to months improves indicators of intestinal permeability. In this brief review, we summarize factors contributing to acute exercise-induced intestinal permeability and what is known about chronic exercise and the gut barrier. Additionally, we outline known and theoretical adaptations of the gut to chronic exercise that may explain emerging reports that exercise improves markers of gut integrity.
The liver enzyme cytochrome P450 1A2 (CYP1A2) is responsible for 90% of caffeine metabolism, while caffeine exerts many of its effects via antagonist binding to adenosine A2a receptors (ADORA2A). This study aimed to examine whether functional single nucleotide polymorphisms (SNPs) in 1976T > C (ADORA2A; rs5751876) and −163C > A (CYP1A2; rs762551) influence the effect of caffeine on the postprandial glucose (GLU) response to a carbohydrate meal. We report that individuals with the 1976T > C CC, but not CT/TT genotypes display elevated GLU levels after consuming caffeine and carbohydrate (CHO + CAFF) versus carbohydrate only (CHO). The GLU area under the curve (AUC) was also greater during the CHO + CAFF condition compared to the CHO condition in CC, but not the CT/TT genotypes. The −163C > A AC/CC, but not AA, genotypes displayed greater GLU concentrations 60-min post meal during CHO + CAFF versus CHO. Our data suggest that caffeine-induced impairments in postprandial glycaemia are related to 1976T > C and −163C > A SNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.