The disaccharide trehalose is accumulated by microorganisms, such as yeasts, and multicellular organisms, such as tardigrades, when conditions of extreme drought occur. In this way these organisms can withstand dehydration through the formation of an intracellular carbohydrate glass, which, with its high viscosity and hydrogen-bonding interactions, stabilizes and protects the integrity of complex biological structures and molecules. This property of trehalose can also be harnessed in the stabilization of liposomes, proteins and in the preservation of red blood cells, but the underlying mechanism of bioprotection is not yet fully understood. Here we use positron annihilation lifetime spectroscopy to probe the free volume of trehalose matrices; specifically, we develop a molecular picture of the organization and mobility of water in both amorphous and crystalline states. Whereas in amorphous matrices, water increases the average intermolecular hole size, in the crystalline dihydrate it is organized as a confined one-dimensional fluid in channels of fixed diameter that allow activated diffusion of water in and out of the crystallites. We present direct real-time evidence of water molecules unloading reversibly from these channels, thereby acting as both a sink and a source of water in low-moisture systems. We postulate that this behaviour may provide the overall stability required to keep organisms viable through dehydration conditions.
The molecular packing of bidisperse matrixes of amorphous carbohydrates consisting of a fractionated maltopolymer supplemented with various amounts of the disaccharide maltose is investigated by combining Positron Annihilation Lifetime Spectroscopy (PALS) with specific volume measurements. The maltopolymer-maltose blends are equilibrated at a range of water activities between 0 and 0.75 at 25 degrees C in order to investigate the effect of water content and carbohydrate molecular weight distribution on the size of the molecular free volume holes in both the glassy and rubbery states. In the rubbery state, the size of the intermolecular holes is only very weakly dependent on the carbohydrate molecular weight, provided that the carbohydrate blends are analyzed at the same water content. In contrast, in the glassy state, significant differences in the size of the free volume holes are observed between the various blends at constant water content. Both the specific volume and the hole volume decrease with increasing maltose content, initially rapidly up to a maltose content of about 40 wt % on total carbohydrate. In addition, we find that the role of water as a plasticizer and matrix constituent is a complex one. At very low water contents, water acts by filling the free volume holes between the carbohydrate molecules. This hole-filling mechanism could well be related to the phenomenon of anti-plasticization observed before. At higher water contents, corresponding generally to water activities above 0.11 at 25 degrees C, water conversely increases the average hole volume in the carbohydrate matrixes, most likely caused by water interfering with the hydrogen bonding between the carbohydrate molecules, leading to a local expansion of the molecular packing.
The specific volume and the nanostructure of the free volume of amorphous blends of maltose with a narrow molecular weight distribution maltopolymer were systematically studied as a function of temperature, water content, pressure, and blend composition. Correlations between the hole free volume and the specific volume were investigated in the glassy and rubbery phases and in solution using positron annihilation lifetime spectroscopy (PALS) and pressure-volume-temperature (PVT) measurements, with the aim to provide a consolidated mechanistic understanding of the relation between changes in molecular packing and at the molecular level and the behavior of the specific volume at the macrolevel. Both specific volume and hole volume show a linear dependence on the temperature, but with a slope which is higher in the rubbery state than in the glassy state. As a function of temperature, the hole volume and the specific volume are linearly related, with no discontinuity at the glass transition temperature (T(g)). In the glassy state, both the specific volume and the hole volume decrease nonlinearly with the addition of maltose to the maltopolymer matrix, due to a more efficient molecular packing. For variations in carbohydrate composition, a linear dependence between the hole volume and the specific volume was again observed. The role of water was found to be significantly more complex, with increasing water content causing an increase in density in both the glassy and rubbery phases indicating that water exists in a highly dispersed state with a significantly lower specific molar volume than in bulk water. At very low water contents, the hole volume and the specific volume both decrease with increasing water content, which suggests that water acts as both a hole filler and a plasticizer. In the glassy state at slightly higher water contents, the specific volume continues to slowly decrease, but the hole size passes through a minimum before it starts to increase. This gives rise to a negative correlation between the hole volume and the specific volume which has not previously been observed and which can be interpreted in terms of water molecules which are dispersed within the glassy carbohydrate matrix and which thereby influence the hydrogen bonding between the carbohydrate molecules.
We employ positron annihilation lifetime spectroscopy (PALS) to measure the temperature dependent fluctuations in a local free volume of water confined in a variety of mesoporous materials with different pore sizes and morphologies. We demonstrate that this unconventional approach can be used to probe the dynamics and glass transition temperature, T g , of water in confinement. In the simplest case of water confined in a 13X molecular sieve (d = 7.4 Å), the confinement is so severe that it precludes crystallisation altogether, and we measure a T g = 190 ± 2 K. We also show that temperature dependent PALS measurements can be used to probe the glass transition of water molecules confined in matrices with larger pore diameters (SBA-15, KIT-6 and Vycor glass), where the confinement is expected to be less severe.
The crystalline structure of ∼ 5-20 µm water ice films grown at 165 and 172 K has been probed by measuring the fraction of positrons forming ortho-positronium (ortho-Ps) and decaying into three gamma photons. It has been established that films grown at slower rates (water vapour pressure ≥ 1 mPa) have lower concentrations of lattice defects and closed pores, which act as Ps traps, than those grown at higher rates (vapour pressure ∼100 mPa), evidenced by ortho-Ps diffusion lengths being approximately four times greater in the former. By varying the growth temperature between 162 and 182 K it was found that films become less disordered at temperatures above ∼172 K, with the ortho-Ps diffusion length rising by ∼60%, in this range. The sublimation energy for water ice films grown on copper has been measured to be 0.462(5) eV using the time dependence of positron annihilation parameters from 165 to 195 K, in agreement with earlier studies and with no measurable dependence on growth rate and thermal history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.