We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not -this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, ∆, should be used instead as super-horizon modes are damped by a factor k 2 . We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes.
Primordial black holes (PBHs) can form in the early Universe from the collapse of rare, large density fluctuations. They have never been observed, but this fact is enough to constrain the amplitude of fluctuations on very small scales which cannot be otherwise probed. Because PBHs form only in very rare large fluctuations, the number of PBHs formed is extremely sensitive to changes in the shape of the tail of the fluctuation distribution -which depends on the amount of non-Gaussianity present. We first study how local non-Gaussianity of arbitrary size up to fifth order affects the abundance and constraints from PBHs, finding that they depend strongly on even small amounts of non-Gaussianity and the upper bound on the allowed amplitude of the power spectrum can vary by several orders of magnitude. The sign of the non-linearity parameters (f N L , g N L , etc) are particularly important. We also study the abundance and constraints from PBHs in the curvaton scenario, in which case the complete non-linear probability distribution is known, and find that truncating to any given order (i.e. to order f N L or g N L , etc) does not give accurate results.arXiv:1307.4995v2 [astro-ph.CO]
The formation and abundance of primordial black holes (PBHs) arising from the curvature perturbation ζ is studied. The non-linear relation between ζ and the density contrast δ means that, even when ζ has an exactly Gaussian distribution, significant non-Gaussianities affecting PBH formation must be considered. Numerical simulations are used to investigate the critical value and the mass of PBHs which form, and peaks theory is used to calculate the mass fraction of the universe collapsing to form PBHs at the time of formation. A formalism to calculate the total present day PBH abundance and mass function is also derived. It is found that the abundance of PBHs is very sensitive to the non-linear effects, and that the power spectrum P ζ must be a factor of O(2) larger to produce the same number of PBHs as if using the linear relation between ζ and δ (where the exact value depends on the critical value for a region to collapse and form a PBH). This also means that the derived constraints on the small-scale power spectrum from constraints on the abundance of PBHs are weaker by the same factor.
Making use of definitive new lattice computations of the Standard Model thermodynamics during the quantum chromodynamic (QCD) phase transition, we calculate the enhancement in the mass distribution of primordial black holes (PBHs) due to the softening of the equation of state. We find that the enhancement peaks at approximately 0.7M⊙, with the formation rate increasing by at least two orders of magnitude due to the softening of the equation of state at this time, with a range of approximately 0.3M⊙ < M < 1.4M⊙ at full width half-maximum. PBH formation is increased by a smaller amount for PBHs with masses spanning a large range, 10 −3 M⊙ < MPBH < 10 3 M⊙, which includes the masses of the BHs that LIGO detected. The most significant source of uncertainty in the number of PBHs formed is now due to unknowns in the formation process, rather than from the phase transition. A near scale-invariant density power spectrum tuned to generate a population with mass and merger rate consistent with that detected by LIGO should also produce a much larger energy density of PBHs with solar mass. The existence of BHs below the Chandresekhar mass limit would be a smoking gun for a primordial origin and they could arguably constitute a significant fraction of the cold dark matter density. They also pose a challenge to inflationary model building which seek to produce the LIGO BHs without overproducing lighter PBHs. * C.Byrnes@sussex.ac.uk † m.b.hindmarsh@sussex.ac.uk ‡ S.M.Young@sussex.ac.uk
In this paper, the criterion used to determine whether a density perturbation will collapse to form a primordial black hole (PBH) is re-examined, in respect of its use to determine the abundance of PBHs. There is particular focus on which parameter to use, the time at which the abundance should be calculated, and the use of different smoothing functions. It is concluded that, with the tools currently available, the smoothed density contrast should be used rather than the peak value, and should be calculated from the time-independent component of the density contrast in the super-horizon limit (long before perturbations enter the horizon) rather than at horizon crossing. For the first time the effect of the choice of smoothing function upon the formation criterion is calculated, and, for a given abundance of PBHs, it is found that the uncertainty in the amplitude of the power spectrum due to this is O(10%), an order of magnitude smaller than previous calculations suggest. The relation between the formation criterion stated in terms of the density contrast and the curvature perturbation R is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.