Large-scale analysis of cellular response to anti-cancer drugs typically focuses on variation in potency (IC50) assuming that it is the most important difference between effective/ineffective drugs or sensitive/resistant cells. We took a multi-parametric approach involving analysis of the slope of the dose-response curve (HS), the area under the curve (AUC) and the maximum effect (Emax). We found that some of these parameters vary systematically with cell line and others with drug class. For cell-cycle inhibitors, Emax often but not always correlated with cell proliferation rate. For drugs targeting the Akt/PI3K/mTOR pathway dose-response curves were unusually shallow. Classical pharmacology has no ready explanation for this phenomenon but single-cell analysis showed that it correlated with significant and heritable cell-to-cell variability in the extent of target inhibition. We conclude that parameters other than potency should be considered in the comparative analysis of drug response, particularly at clinically relevant concentrations near and above IC50.
Summary
Antiplatelet drugs targeting G-protein-coupled receptors (GPCRs), used for the secondary prevention of arterial thrombosis, coincide with an increased bleeding risk. Targeting ITAM-linked receptors, such as the collagen receptor glycoprotein VI (GPVI), is expected to provide a better antithrombotic-hemostatic profile. Here, we developed and characterized an ultra-high-throughput (UHT) method based on intracellular [Ca
2+
]
i
increases to differentiate GPVI and GPCR effects on platelets. In 96-, 384-, or 1,536-well formats, Calcium-6-loaded human platelets displayed a slow-prolonged or fast-transient [Ca
2+
]
i
increase when stimulated with the GPVI agonist collagen-related peptide or with thrombin and other GPCR agonists, respectively. Semi-automated curve fitting revealed five parameters describing the Ca
2+
responses. Verification of the UHT assay was done with a robustness compound library and clinically relevant platelet inhibitors. Taken together, these results present proof of principle of distinct receptor-type-dependent Ca
2+
signaling curves in platelets, which allow identification of new inhibitors in a UHT way.
A central challenge of antimalarial therapy is the emergence of resistance to the components of artemisinin-based combination therapies (ACTs) and the urgent need for new drugs acting through novel mechanism of action. Over the last decade, compounds identified in phenotypic high throughput screens (HTS) have provided the starting point for six candidate drugs currently in the Medicines for Malaria Venture (MMV) clinical development portfolio. However, the published screening data which provided much of the new chemical matter for malaria drug discovery projects have been extensively mined. Here we present a new screening and selection cascade for generation of hit compounds active against the blood stage of Plasmodium falciparum. In addition, we validate our approach by testing a library of 141,786 compounds not reported earlier as being tested against malaria. The Hit Generation Library 1 (HGL1) was designed to maximise the chemical diversity and novelty of compounds with physicochemical properties associated with potential for further development. A robust HTS cascade containing orthogonal efficacy and cytotoxicity assays, including a newly developed and validated nanoluciferase-based assay was used to profile the compounds. 75 compounds (Screening Active hit rate of 0.05%) were identified meeting our stringent selection criteria of potency in drug sensitive (NF54) and drug resistant (Dd2) parasite strains (IC50 ≤ 2 uM), rapid speed of action and cell viability in HepG2 cells (IC50 ≥ 10 uM). Following further profiling, 33 compounds were identified that meet the MMV Confirmed Active profile and are high quality starting points for new antimalarial drug discovery projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.