A simple free-space optics recipe for the generation and detection of the optical vortices superposition is demonstrated. For the purpose a doughnut laser beam is produced by the cracked glass plate. To control the vorticity of produced doughnut light, one can deform the cracked plate. For the generation of the optical vortices superposition and determination the vorticity of the produced doughnut light, two simple interferometry setups are employed. The experimental Sagnac interferometry setup for preparing and analysing superpositions of an optical vortex and Gaussian modes is presented. Furthermore, the superpositions of two twisted beam with the opposite topological charge numbers by an experimental Michelson-Sagnac interferometry is proposed. These simple free-space experiments are useful to the application of orbital angular momenta superpositions in the quantum cryptography and the undergraduate educations
The main purpose of the present article is reactivity and stability properties study of the antagonist compound esketamine and analyzing of its binding to the noncompetitive N-methyl-D-aspartate receptor subunits (NR1, NR2A, NR2B and NR2D). In first step, the molecular structure of esketamine was optimized using density functional theory (DFT) method at B3YP/6-311++G(d,p) level of theory. The reactivity and stability properties of the title medicinal compound were studied by global reactivity indices. The computational data showed the molecule is stable and has low tendency to interact with residues of the biomolecules like receptors and proteins. Secondly, the molecule binding to the receptors were analyzed by molegro virtual docker (MVD) program. Our computations indicated that the compound asserts its pharmacological effects mainly through interactions with NR2B receptors and the NR2B residues containing Gly [A] 128, His [A] 127, Gly [A] 264, Tyr [A] 282, Ser [A] 131, Asp [A] 265, Ser [A] 260 and Met [A] 132 are the main amino acids involved in the ligand-receptor complex formation.
The main purpose of present study is evaluation of structural and medicinal properties for Withaferin A (WIT) using density functional theory (DFT) method. All studies are done via computational chemistry methods using Gaussian 03 and Molegro Virtual Docker (MVD) software packages and SwissADME web-based tool. Molecular structure of WIT was optimized at the B3LYP/6-311++G(d,p) theoretical level of DFT. The reactivity and stability properties of the optimized molecule were explored via global reactivity indices. Calculating the reactivity indices using energies of frontier molecular orbitals (FMOs) showed that WIT is stable against the oxidizing agents in the cell and has low reactivity against the biomolecules. On the other hand, the docking analysis data indicated the steric interactions play important role in WIT binding to beta-Tubulin via the residues Tyr224,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.