The antileishmanial efficacy of four novel quinoline derivatives was determined in vitro against Leishmania chagasi, using extracellular and intracellular parasite models. When tested against L. chagasi-infected macrophages, compound 3b demonstrated 8.3-fold greater activity than did the standard pentavalent antimony. No significant activity was found for compounds 3a, 4a, and 4b. The antilesihmanial effect of compound 3b was independent of host cell activation, as demonstrated by nitric oxide production. Ultrastructural studies of promastigotes treated with compound 3b showed mainly enlarged mitochondria, with matrix swelling and reduction in the number of cristae. Synthetic analogues based on the quinoline ring structure, already an established template for antiparasitic drugs, could provide further useful compounds.
Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.