Renewal of stem cells differs from cancer cell growth in self-controlled cell division. The mir-302 microRNA (miRNA) family (mir-302s) is expressed most abundantly in slow-growing human embryonic stem (ES) cells, and quickly decreases after cell differentiation and proliferation. Therefore, mir-302s was investigated as one of the key factors essential for maintenance of ES cell renewal and pluripotency in this study. The Pol-II-based intronic miRNA expression system was used to transgenically transfect the mir-302s into several human cancer cell lines. The mir-302 -transfected cells, namely, miRNA-induced pluripotent stem (mirPS) cells, not only expressed many key ES cell markers, such as Oct3/4, SSEA-3, SSEA-4 ,Sox2, and Nanog, but also had a highly demethylated genome similar to a reprogrammed zygotic genome. Microarray analyses further revealed that genomewide gene expression patterns between the mirPS and human ES H1 and H9 cells shared over 86% similarity. Using molecular guidance in vitro, these mirPS cells could differentiate into distinct tissue cell types, such as neuron-, chondrocyte-, fibroblast-, and spermatogonia-like primordial cells. Based on these findings, we conclude that mir-302s not only function to reprogram cancer cells into an ES-like pluripotent state but also to maintain this state under a feeder-free cultural condition, which may offer a great opportunity for therapeutic intervention.
Excessive accumulation of embryonic stem cell (ESC)-specific microRNAs occurs in both ESCs and induced pluripotent stem cells (iPSC); yet, the mechanism involved is unknown. In iPSCs, we for the first time found that novel glycylated sugar alcohols, particularly glycylglycerins, are tightly bound with ESC-specific microRNA precursors (pre-miRNA), such as pre-miR-302. Among these isolated glycylglycerins, we further identified that 1,3-diglycylglycerin and 1,2,3-triglycylglycerin are two major compounds bonded with negatively charged nucleic acids via electro-affinity and subsequently forming sugar-like coats in the hairpin-like double helix structures of pre-miRNAs. As a result, such glycylglycerin-formed coating serves as a protection layer against miRNA degradation. Moreover, we found that the pH value of iPSC cytosol determines the charges of these glycylglycerins. During iPSC differentiation, the cytosol pH is increased and hence neutralizes the charges of glycylglycerins, consequently leading to fast miRNA degradation. Therefore, the current findings not only explain how ESC-specific miRNAs are preserved and accumulated in iPSCs and ESCs but also demonstrate an important function of glycylglycerins in protecting the structural integrity of highly degradable miRNAs, providing a useful means for maintaining miRNA/siRNA function as well as developing the related RNA interference (RNAi) applications.
Abstract:A new class of repeat-associated microRNA (ramRNA) is identified to hinder normal brain development in zebrafish. Previous studies have shown that small hairpin RNAs derived from the 5'-untranslational CGG/CCG trinucleotide repeat [r(CGG)] expansion of fragile X mental retardation gene 1, FMR1, may cause neuronal toxicity in fragile X mental retardation syndrome (FXS). However, their roles in FXS remain unclear. We report here that over-expression of a novel ramRNA species isolated from the fish FMR1 r(CGG) region triggers FXS-like neurodegeneration in a transgenic zebrafish model. Hyper-methylation of the FMR1 5'-r(CGG) region associated with ramRNA over-expression is central to this FXS-like etiology. Such an epigenetic modification results in the transcriptional inactivation of the FMR1 gene and deficiency of its protein FMRP. FMRP deficiency further causes neurite deformity and synaptic dysfunction in the hippocampal neurons essential for cognition and memory. These findings provide significant insights into the role of ramRNAs in the embryonic brain development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.