The green peach aphid, Myzus persicae, is globally distributed and an important pest of many economically valuable food crops, largely due to its ability to transmit plant viruses. Almost all aphids, including M. persicae, carry the obligate symbiont Buchnera aphidicola, which provides essential amino acids that aphids cannot obtain from the phloem of plants themselves. Many aphids also harbor facultative (secondary) endosymbionts, which provide benefits under specific ecological conditions. In this study, we screened for secondary endosymbionts in M. persicae, with a particular focus on Australian populations where this species is growing in status as a major agricultural pest. We compared 37 Australian M. persicae populations with other populations, including 21 field populations from China and 15 clones from the UK, France, Italy, Greece, USA, Spain, South Korea, Chile, Japan and Zimbabwe. No secondary endosymbionts were identified in M. persicae samples outside of China, despite samples covering a wide geographic range and being collected from several host plant families. We detected two secondary endosymbionts (Rickettsia, Spiroplasma) in Chinese samples, although diversity appeared lower than detected in a recent study. We also found very high clonal diversity in Chinese samples based on DNA microsatellite markers in comparison with lower clonal diversity from Australia. These patterns may indicate a higher diversity of secondary endosymbionts (and clonal diversity) in the native range of M. persicae when compared to its invasive range.
BACKGROUND: The prophylactic use of seeds treated with neonicotinoid insecticides remains an important means of controlling aphid pests in canola (Brassica napus) crops in many countries. Yet, one of the most economically important aphid species worldwide, the peach potato aphid (Myzus persicae), has evolved mechanisms which confer resistance to neonicotinoids, including amplification of the cytochrome P450 gene, CYP6CY3. While CYP6CY3 amplification has been associated with lowlevel resistance to several neonicotinoids in laboratory acute toxicity bioassays, its impact on insecticide efficacy in the field remains unresolved. In this study, we investigated the impact of CYP6CY3 amplification on the ability of M. persicae to survive neonicotinoid exposure under laboratory and semi-field conditions.RESULTS: Three M. persicae clones, possessing different copy numbers of CYP6CY3, were shown to respond differently when exposed to the neonicotinoids, imidacloprid and thiamethoxam, in laboratory bioassays. Two clones, EastNaernup209 and Osborne171, displayed low levels of resistance (3-20-fold), which is consistent with previous studies. However, in a large-scale semi-field trial, both clones showed a surprising ability to survive and reproduce on B. napus seedlings grown from commercial rates of neonicotinoid-treated seed. In contrast, an insecticide-susceptible clone, of wild-type CYP6CY3 copy number, was unable to survive on seedlings treated in the same manner. CONCLUSION: Our findings suggest that amplification of CYP6CY3 in M. persicae clones substantially impairs the efficacy of neonicotinoid seed treatments when applied to B. napus. These findings highlight the potentially important real-world implications of resistances typically considered to be 'low level' as defined through laboratory bioassays.
Globally, 27 aphid species have evolved resistance to almost 100 insecticide active ingredients. A proactive approach to resistance management in pest aphids is needed; this should include risk analysis, followed by regular baseline susceptibility assays for species deemed at high risk of evolving resistance. The cowpea aphid (Aphis craccivora Koch) has evolved insecticide resistance to multiple insecticides outside Australia and was recently identified as a high-risk species in Australia. In this study, we generated toxicity data against four insecticides (representing four unique chemical Mode of Action groups) for populations of A. craccivora collected across Australia. Alpha-cypermethrin was the most toxic chemical to A. craccivora in leaf-dip laboratory bioassays with an average LC50 value across nine populations of 0.008 mg a.i./L, which was significantly lower than dimethoate (1.17 mg a.i./L) and pirimicarb (0.89 mg a.i./L). Small, but significant, differences in sensitivity were detected in some populations against pirimicarb and dimethoate, whereas responses to alpha-cypermethrin and imidacloprid were not significantly different across all aphid populations examined in this study. For all insecticides, the field rate controlled 100% of individuals tested. The data generated will be important for future monitoring of insecticide responses of A. craccivora. Proactive management, including increased reliance on non-chemical pest management approaches and routine insecticide baseline sensitivity studies, is recommended for A. craccivora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.