The performance of a novel, transmissionmode, portable, Fourier transform infrared (FTIR) analyzer was evaluated and compared to that of a benchtop attenuated total reflection (ATR)-FTIR spectrometer. The total concentration of trans fatty acids in the fat extracted from 19 representative fast foods was rapidly (\5 min) quantified in a single measurement after conversion to fatty acid methyl esters (FAME). While the FTIR determination is rapid, the time required for extraction and derivatization is not. For all extracts, the total trans FAME concentration varied from approximately 0.5 to 11 % (of total FAME) as determined using the portable FTIR analyzer. The trans fat contents (mean ± SD), expressed in grams per serving and calculated on the basis of total fat content and FTIR determination of trans fat content, were found to be 1.00 ± 0.42 for hamburgers, 0.67 ± 0.78 for chicken tenders, 1.00 ± 1.24 for French fries, and 0.27 ± 0.23 for apple pies. Determinations of total trans-unsaturated FAME were consistent with those obtained by use of ATR-FTIR and GC official methods (AOCS Cd 14e-09 and AOCS Ce 1j-07, respectively). These results indicate that the portable FTIR analyzer is suitable for the rapid and routine quantification of total trans fat measured as FAME prepared from fats extracted from fast foods.
Development of assays to screen milk for economically motivated adulteration with foreign proteins has been stalled since 2008 due to strong international reactions to the melamine poisoning incident in China and the surveillance emphasis placed on low molecular weight nitrogen-rich adulterants. New screening assays are still needed to detect high molecular weight foreign protein adulterants and characterize this understudied potential risk. A rapid turbidimetric method was developed to screen milk powder for adulteration with insoluble plant proteins. Milk powder samples spiked with 0.03-3% by weight of soy, pea, rice, and wheat protein isolates were extracted in 96-well plates, and resuspended pellet solution absorbance was measured. Limits of detection ranged from 100 to 200 μg, or 0.1-0.2% of the sample weight, and adulterant pellets were visually apparent even at ∼0.1%. Extraction recoveries ranged from 25 to 100%. Assay sensitivity and simplicity indicate that it would be ideally suitable to rapidly screen milk samples in resource poor environments where adulteration with plant protein is suspected.
Raman spectroscopy in combination with chemometrics was explored as a rapid, non-targeted screening method for the detection of milk powder (MP) adulteration using melamine as an example contaminant. Raman spectroscopy and an unsupervised pattern-recognition method, principal component analysis (PCA), allowed for the differentiation of authentic MPs from adulterated ones at concentrations > 1.0% for dry-blended (DB) samples and > 0.30% for wet-blended (WB) ones. Soft independent modelling of class analogy (SIMCA), a supervised pattern-recognition method, was also used to classify test samples as adulterated or authentic. Combined statistics at a 97% confidence level from the SIMCA models correctly classified adulteration of MP with melamine at concentrations ≥ 0.5% for DB samples and ≥ 0.30% for WB ones, while no false-positives from authentic MPs were found when the spectra in the 600-700 cm range were pre-processed using standard normal variate (SNV) followed by a gap-segment derivatisation. The combined technique of Raman spectroscopy and chemometrics proved to be a useful tool for the rapid and cost-efficient non-targeted detection of adulteration in MP at per cent spiking levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.