In this paper we consider nonhomogeneous birth and death processes (BDP) with periodic rates. Two important parameters are studied, which are helpful to describe a nonhomogeneous BDP X = X (t), t ≥ 0: the limiting mean value (namely, the mean length of the queue at a given time t) and the double mean (i.e. the mean length of the queue for the whole duration of the BDP). We find conditions of existence of the means and determine bounds for their values, involving also the truncated BDP X N . Finally we present some examples where these bounds are used in order to approximate the double mean.
Given a scalar random variable Y and a random vector X defined on the same probability space, the conditional distribution of Y given X can be represented by either the conditional distribution function or the conditional quantile function. To these equivalent representations correspond two alternative approaches to estimation. One approach, distributional regression (DR), is based on direct estimation of the conditional distribution function; the other approach, quantile regression (QR), is instead based on direct estimation of the conditional quantile function. Indirect estimates of the conditional quantile function and the conditional distribution function may then be obtained by inverting the direct estimates obtained from either approach. Despite the growing attention to the DR approach, and the vast literature on the QR approach, the link between the two approaches has not been explored in detail. The aim of this paper is to fill-in this gap by providing a better understanding of the relative performance of the two approaches, both asymptotically and in finite samples, under the linear location model and certain types of heteroskedastic location-scale models.
We propose a new definition of the Neyman chi-square divergence between distributions. Based on convexity properties and duality, this version of the is well suited both for the classical applications of the for the analysis of contingency tables and for the statistical tests in parametric models, for which it is advocated to be robust against outliers.\ud We present two applications in testing. In the first one, we deal with goodness-of-fit tests for finite and infinite numbers of linear constraints; in the second one, we apply -methodology to parametric testing against contamination
A procedure for efficient estimation of the trimmed mean of a random variable conditional on a set of covariates is proposed. For concreteness, the focus is on a financial application where the trimmed mean of interest corresponds to the conditional expected shortfall, which is known to be a coherent risk measure. The proposed class of estimators is based on representing the estimator as an integral of the conditional quantile function. Relative to the simple analog estimator that weights all conditional quantiles equally, asymptotic efficiency gains may be attained by giving different weights to the different conditional quantiles while penalizing excessive departures from uniform weighting. The approach presented here allows for either parametric or nonparametric modeling of the conditional quantiles and the weights, but is essentially nonparametric in spirit. The asymptotic properties of the proposed class of estimators are established. Their finite sample properties are illustrated through a set of Monte Carlo experiments and an empirical application
In this paper we study different types of planar random motions (performed with constant velocity) with three directions, defined by the vectorsdj= (cos(2πj/3), sin(2πj/3)) forj= 0, 1, 2, changing at Poisson-paced times. We examine the cyclic motion (where the change of direction is deterministic), the completely uniform motion (where at each Poisson event each direction can be taken with probability) and the symmetrically deviating case (where the particle can choose all directions except that taken before the Poisson event). For each of the above random motions we derive the explicit distribution of the position of the particle, by using an approach based on order statistics. We prove that the densities obtained are solutions of the partial differential equations governing the processes. We are also able to give the explicit distributions on the boundary and, for the case of the symmetrically deviating motion, we can write it as the distribution of a telegraph process. For the symmetrically deviating motion we use a generalization of the Bose-Einstein statistics in order to determine the distribution of the triple (N0,N1,N2) (conditional onN(t) =k, withN0+N1+N2=N(t) + 1, whereN(t) is the number of Poisson events in [0,t]), whereNjdenotes the number of times the directiondj(j= 0, 1, 2) is taken. Possible extensions to four directions or more are briefly considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.