SummaryNeurochemically defined populations of inhibitory interneurons in the superficial dorsal horn of the spinal cord differ in their receptor expression pattern and responses to noxious stimuli.
It is consistently reported that in inflammatory arthritis (IA), pain may continue despite well-controlled inflammation, most likely due to interactions between joint pathology and pain pathway alterations. Nervous system alterations have been described, but much remains to be understood about neuronal and central non-neuronal changes in IA. Using a rat model of IA induced by intra-articular complete Freund's adjuvant injection, this study includes a thorough characterization of joint pathology and objectives to identify peripheral innervation changes and alterations in the spinal dorsal horn (DH) that could alter DH excitatory balancing. Male and female rats displayed long-lasting pain-related behavior, but, in agreement with our previous studies, other pathological alterations emerged only at later times. Cartilage vascularization, thinning, and decreased proteoglycan content were not detectable in the ipsilateral cartilage until 4 weeks after complete Freund's adjuvant. Sympathetic and peptidergic nociceptive fibers invaded the ipsilateral cartilage alongside blood vessels, complex innervation changes were observed in the surrounding skin, and ipsilateral nerve growth factor protein expression was increased. In the DH, we examined innervation by peptidergic and nonpeptidergic nociceptors, inhibitory terminal density, the KCl cotransporter KCC2, microgliosis, and astrocytosis. Here, we detected the presence of microgliosis and, interestingly, an apparent loss of inhibitory terminals and decreased expression of KCC2. In conclusion, we found evidence of anatomical, inflammatory, and neuronal alterations in the peripheral and central nervous systems in a model of IA. Together, these suggest that there may be a shift in the balance between incoming and outgoing excitation, and modulatory inhibitory tone in the DH.
Supplemental Digital Content is Available in the Text.Pain-processing anterior cingulate and primary somatosensory cortical areas display distinct MOR expression profiles with prominent differences between output layers and sexes.
Objectives
Alterations beyond joint inflammation such as changes in dorsal horn (DH) excitability contribute to pain in inflammatory arthritis (IA). More complete understanding of specific underlying mechanisms will be important to define novel targets for the treatment of IA pain. Pre-clinical models are useful, but relevant pain assays are vital for successful clinical translation. For this purpose, a method is presented to assess movement-induced pain-related behaviour changes that was subsequently used to investigate DH disinhibition in IA.
Methods
IA was induced by intra-articular injection of complete Freund’s adjuvant (CFA) in male rats, and weight distribution was assessed before and after walking on a treadmill. To confirm increased activity in nociception-related pathways, fos expression was assessed in the superficial DH, including in nociceptive neurons, identified by neurokinin 1 (NK1) immunoreactivity, and interneurons. Inhibitory terminal density onto NK1+ neurons was assessed and lastly, a cohort of animals was treated for 3 days with gabapentin.
Results
At 4 weeks post-CFA, walking reduced weight distribution to the affected joint and increased DH fos expression, including in NK1+ neurons. Neuronal activity in inhibitory cells and inhibitory terminal density on NK1+ neurons were decreased in CFA-treated animals compared with controls. Treatment with gabapentin led to recovered behaviour and DH neuronal activity pattern in CFA-treated animals.
Conclusion
We describe an assay to assess movement-induced pain-related behaviour changes in a rodent IA model. Furthermore, our results suggest that disinhibition may contribute to pain related to movement in IA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.