The purpose of this study was to formulate topically effective controlled release ophthalmic acetazolamide liposomal formulations. Reverse-phase evaporation and lipid film hydration methods were used for the preparation of reverse-phase evaporation (REVs) and multilamellar (MLVs) acetazolamide liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (7:2), (7:4), (7:6), and (7:7) with or without stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively. The prepared liposomes were evaluated for their entrapment efficiency and in vitro release. Multilamellar liposomes entrapped greater amounts of drug than REVs liposomes. Drug loading was increased by increasing CH content as well as by inclusion of SA. Drug release rate showed an order of negatively charged > neutral > positively charged liposomes, which is the reverse of the data of drug loading efficiency. Physical stability study indicated that approximately 89%, 77%, and 69% of acetazolamide was retained in positive, negative, and neutral MLVs liposomal formulations up to a period of 3 months at 4 degrees C. The intraocular pressure (IOP)-lowering activity of selected acetazolamide liposomal formulations was determined and compared with that of plain liposomes and acetazolamide solution. Multilamellar acetazolamide liposomes revealed more prolonged effect than REVs liposomes. The positively charged and neutral liposomes exhibited greater lowering in IOP and a more prolonged effect than the negatively charged ones. The positive multilamellar liposomes composed of PC:CH:SA (7:4:1) molar ratio showed the maximal response, which reached a value of -7.8 +/- 1.04 mmHg after 3 hours of topical administration.
The objective was to develop a microemulsion formulation for the transdermal delivery of testosterone. Microemulsion formulations were prepared using oleic acid as the oil phase, Tween20 as a surfactant, Transcutol as cosurfactant, and water. The microemulsions were characterized visually, with the polarizing microscope, and by dynamic light scattering. In addition, the pH, conductivity (sigma) and viscosity (eta) of the formulations were measured. Moreover, differential scanning calorimetry and diffusion-ordered nuclear magnetic resonance spectroscopy were used to study the formulations investigated. Conductivity measurements revealed, as a function of the weight fraction of the aqueous phase, the point at which the microemulsion made the transition from water-in-oil to bicontinuous. Alterations in the microstructure of the microemulsions, following incorporation of testosterone, have been evaluated using the same physical parameters (pH, sigma and eta) and via Fourier-transform infrared spectroscopy (FT-IR), (1)H NMR and (13)C NMR. These methods were also used to determine the location of the drug in the colloidal formulation. Finally, testosterone delivery from selected formulations was assessed across porcine skin in vitro in Franz diffusion cells. The physical parameter determinations, combined with the spectroscopic studies, demonstrated that the drug was principally located in the oily domains of the microemulsions. Testosterone was delivered successfully across the skin from the microemulsions examined, with the highest flux achieved (4.6+/-0.6microgcm(-2)h(-1)) from a formulation containing 3% (w/v) of the active drug and the composition (w/w) of 16% oleic acid, 32% Tween20, 32% Transcutol and 20% water. The microemulsions considered offer potentially useful vehicles for the transdermal delivery of testosterone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.