The construction of novel compound tools through assemblage of otherwise non-functional elements involves anticipation of the affordances of the tools to be built. Except for few observations in captive great apes, compound tool construction is unknown outside humans, and tool innovation appears late in human ontogeny. We report that habitually tool-using New Caledonian crows (Corvus moneduloides) can combine objects to construct novel compound tools. We presented 8 naïve crows with combinable elements too short to retrieve food targets. Four crows spontaneously combined elements to make functional tools, and did so conditionally on the position of food. One of them made 3- and 4-piece tools when required. In humans, individual innovation in compound tool construction is often claimed to be evolutionarily and mechanistically related to planning, complex task coordination, executive control, and even language. Our results are not accountable by direct reinforcement learning but corroborate that these crows possess highly flexible abilities that allow them to solve novel problems rapidly. The underlying cognitive processes however remain opaque for now. They probably include the species’ typical propensity to use tools, their ability to judge affordances that make some objects usable as tools, and an ability to innovate perhaps through virtual, cognitive simulations.
Inferential reasoning by exclusion allows responding adaptively to various environmental stimuli when confronted with inconsistent or partial information. In the experimental context, this mechanism allows selecting correctly between an empty option and a potentially rewarded one. Recently, the increasing reports of this capacity in phylogenetically distant species have led to the assumption that reasoning by exclusion is the result of convergent evolution. Within one largely unstudied avian order, i.e. the Charadriiformes, brown skuas (Catharacta antarctica ssp lonnbergi) are highly flexible and opportunistic predators.Behavioural flexibility, along with specific aspects of skuas' feeding ecology, may act as influencing factors in their ability to show exclusion performance. Our study aims to test whether skuas are able to make choice by exclusion in a visual two-way object-choice task.Twenty-six wild birds were presented with two opaque cups, one covering a food reward.Three conditions were used: 'full information' (showing the content of both cups), 'exclusion' (showing the content of the empty cup), and 'control' (not showing any content).Skuas preferentially selected the rewarded cup in the full information and exclusion condition. The use of olfactory cues was excluded by results in the control condition. Our study highlights the cognitive potential of this predatory seabird and opens new investigations for testing further its cognition in the wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.