The endoderm is one of the primary germ layers but, in comparison to ectoderm and mesoderm, has received less attention. The definitive endoderm forms during gastrulation and replaces the extraembryonic visceral endoderm. It participates in the complex morphogenesis of the gut tube and contributes to the associated visceral organs. This review highlights the role of the definitive endoderm as a source of patterning cues for the morphogenesis of other germ-layer tissues, such as the anterior neurectoderm and the pharyngeal region, and also emphasizes the intricate patterning that the endoderm itself undergoes enabling the acquisition of regionalized cell fates. Developmental Dynamics 235:2315-2329, 2006.
Loss of Dkk1 results in ectopic WNT/β-catenin signalling activity in the anterior germ layer tissues and impairs cell movement in the endoderm of the mouse gastrula. The juxtaposition of the expression domains of Dkk1 and Wnt3 is suggestive of an antagonistagonist interaction. The downregulation of Dkk1 when Wnt3 activity is reduced reveals a feedback mechanism for regulating WNT signalling. Compound Dkk1;Wnt3 heterozygous mutant embryos display head truncation and trunk malformation, which are not found in either Dkk1 +/-or Wnt3 +/-embryos. Reducing the dose of Wnt3 gene in Dkk1 -/-embryos partially rescues the truncated head phenotype. These findings highlight that head development is sensitive to the level of WNT3 signalling and that DKK1 is the key antagonist that modulates WNT3 activity during anterior morphogenesis.
During mouse gastrulation, endoderm cells of the dorsal foregut are recruited ahead of the ventral foregut and move to the anterior region of the embryo via different routes. Precursors of the anterior-most part of the foregut and those of the mid-and hind-gut are allocated to the endoderm of the mid-streak-stage embryo, whereas the precursors of the rest of the foregut are recruited at later stages of gastrulation. Loss of Mixl1 function results in reduced recruitment of the definitive endoderm, and causes cells in the endoderm to remain stationary during gastrulation. The observation that the endoderm cells are inherently unable to move despite the expansion of the mesoderm in the Mixl1-null mutant suggests that the movement of the endoderm and the mesoderm is driven independently of one another.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.