Yield limitation and widespread sulphur (S) deficiency in pearl-millet-nurturing dryland soils has emerged as a serious threat to crop productivity and quality. Among diverse pathways to tackle moisture and nutrient stress in rainfed ecologies, conservation agriculture (CA) and foliar nutrition have the greatest potential due to their economic and environmentally friendly nature. Therefore, to understand ammonium thiosulphate (ATS)-mediated foliar S nutrition effects on yield, protein content, mineral biofortification, and sulphur economy of rainfed pearl millet under diverse crop establishment systems, a field study was undertaken. The results highlighted that pearl millet grain and protein yield was significantly higher under no-tillage +3 t/ha crop residue mulching (NTCRM) as compared to no-tillage without mulch (NoTill) and conventional tillage (ConvTill), whereas the stover yield under NTCRM and ConvTill remained at par. Likewise, grain and stover yield in foliar S application using ATS 10 mL/L_twice was 19.5% and 13.2% greater over no S application. The sulphur management strategy of foliar-applied ATS 10 mL/L_twice resulted in significant improvement in grain protein content, protein yield, micronutrient fortification, and net returns (₹ 54.6 × 1000) over the control. Overall, ATS-mediated foliar S nutrition can be an alternate pathway to S management in pearl millet for yield enhancement, micronutrient biofortification and grain protein content increase under ConvTill, as well as under the new NTCRM systems.
Micronutrient malnutrition or hidden hunger remains a major global challenge for human health and wellness. The problem results from soil micro- and macro-nutrient deficiencies combined with imbalanced fertilizer use. Micronutrient-embedded NPK (MNENPK) complex fertilizers have been developed to overcome the macro- and micro-element deficiencies to enhance the yield and nutritive value of key crop products. We investigated the effect of foliar applications of an MNENPK fertilizer containing N, P, K, Fe, Zn and B in combination with traditional basal NPK fertilizers in terms of eggplant yield, fruit nutritive quality and on soil biological properties. Applying a multi-element foliar fertilizer improved the nutritional quality of eggplant fruit, with a significant increases in the concentration of Fe (+ 26%), Zn (+ 34%), K (+ 6%), Cu (+ 24%), and Mn (+ 27%), all of which are essential for human health. Increasing supply of essential micronutrients during the plant reproductive stages increased fruit yield, as a result of improved yield parameters. The positive effect of foliar fertilizing with MNENPK on soil biological parameters (soil microbial biomass carbon, dehydrogenase, alkaline phosphatase) also demonstrated its capacity to enhance soil fertility. This study suggests that foliar fertilizing with a multi-nutrient product such as MNENPK at eggplant flowering and fruiting stages, combined with the recommended-doses of NPK fertilizers is the optimal strategy to improve the nutritional quality of eggplant fruits and increase crop yields, both of which will contribute to reduce micronutrient malnutrition and hunger globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.