The Black Death (1347–1352 ce) is the most renowned pandemic in human history, believed by many to have killed half of Europe’s population. However, despite advances in ancient DNA research that conclusively identified the pandemic’s causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, ‘big data palaeoecology’, which, starting from palynological data, evaluates the scale of the Black Death’s mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death’s mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics.
Abstract. Sedimentary charcoal records are widely used to reconstruct regional changes
in fire regimes through time in the geological past. Existing global
compilations are not geographically comprehensive and do not provide
consistent metadata for all sites. Furthermore, the age models provided for
these records are not harmonised and many are based on older calibrations of
the radiocarbon ages. These issues limit the use of existing compilations
for research into past fire regimes. Here, we present an expanded database
of charcoal records, accompanied by new age models based on recalibration of
radiocarbon ages using IntCal20 and Bayesian age-modelling software. We
document the structure and contents of the database, the construction of the
age models, and the quality control measures applied. We also record the
expansion of geographical coverage relative to previous charcoal
compilations and the expansion of metadata that can be used to inform
analyses. This first version of the Reading Palaeofire Database contains
1676 records (entities) from 1480 sites worldwide. The database (RPDv1b – Harrison et al., 2021) is available at
https://doi.org/10.17864/1947.000345.
Human impact on Central European forests dates back thousands of years. In this study we reanalyzed 36 published pollen data sets with robust chronologies from Polish Lowlands to determine the patterns of large-scale forest decline after the Migration Period (fourth to sixth century CE). The study revealed substantial heterogeneity in the old-growth forest decline patterns. Using new high-resolution studies, we could better understand the timing of this transition related to increasing economic development. After the Migration Period, forest expansion continued until the seventh to ninth centuries cal. CE, when the dawn of Slavic culture resulted in large-scale forest decline, especially in north-western and north-central Poland. Later, forest decline was recorded mainly in north-eastern Poland and was related to Prussian settlements, including activities associated with the Teutonic Order, as well as with new settlements from the fourteenth century. The composite picture shows a varied spatio-temporal forest loss and transition towards the present-day, human activity dominated landscapes. However, some sites, such as in north-eastern Poland, are characterized by a less abrupt critical transition. The pristine nature of the oak-hornbeam forest had already been destroyed in Early Medieval times (eighth to ninth centuries cal. CE) and the potential for recovery was largely lost. Our study has confirmed previous assumptions that the decline of hornbeam across the Polish Lowlands may be an early indicator of local settlement processes, preceding severe forest loss, and establishment of permanent agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.