There is tremendous scope for improving the energy efficiency of embedded vision systems by incorporating programmable region-of-interest (ROI) readout in the image sensor design. In this work, we study how ROI programmability can be leveraged for vision applications by anticipating where the ROI will be located in future frames and switching pixels off outside of this region. We refer to this process of ROI prediction and corresponding sensor configuration as adaptive subsampling. Our adaptive subsampling algorithms comprise an object detector and an ROI predictor (Kalman filter) which operate in conjunction to optimize the energy efficiency of the vision pipeline with the end task being object tracking. To further facilitate the implementation of our adaptive algorithms in real systems, we select a candidate algorithm and map it onto an FPGA. Leveraging Xilinx Vitis AI tools, we designed and accelerated a YOLO object detector-based adaptive subsampling algorithm. In order to further improve the algorithm post-deployment, we evaluated several competing baselines on the OTB100 and LaSOT datasets. We found that coupling the ECO tracker with the Kalman filter has a competitive AUC score of 0.4568 and 0.3471 on the OTB100 and LaSOT datasets respectively. Further, the power efficiency of this algorithm is on par with, and in a couple of instances superior to, the other baselines. The ECO-based algorithm incurs a power consumption of approximately 4 W averaged across both datasets while the YOLO-based approach requires power consumption of approximately 6 W (as per our power consumption model). In terms of accuracy-latency tradeoff, the ECO-based algorithm provides near-real-time performance (19.23 FPS) while managing to attain competitive tracking precision.INDEX TERMS Adaptive subsampling, embedded computer vision, FPGA acceleration, hardware/software co-design, single object tracking, vision applications
Effective patient care mandates rapid, yet accurate, diagnosis. With the abundance of non-invasive diagnostic measurements and electronic health records (EHR), manual interpretation for differential diagnosis has become time-consuming and challenging. This has led to wide-spread adoption of AI-powered tools, in pursuit of improving accuracy and efficiency of this process. While the unique challenges presented by each modality and clinical task demand customized tools, the cumbersome process of making problem-specific choices has triggered the critical need for a generic solution to enable rapid development of models in practice. In this spirit, we develop DDxNet, a deep architecture for time-varying clinical data, which we demonstrate to be well-suited for diagnostic tasks involving different modalities (ECG/EEG/EHR), required level of characterization (abnormality detection/phenotyping) and data fidelity (single-lead ECG/22-channel EEG). Using multiple benchmark problems, we show that DDxNet produces high-fidelity predictive models, and sometimes even provides significant performance gains over problem-specific solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.