Chemical variation of Silybum marianum growing in the north, middle, and south of Egypt was investigated. Variation was assessed according to the content of the individual silymarin components in the fruits of the plant. The fruits were distinguished according to location, plant variety, and fruit color (maturity). Accelerated solvent extraction was used to standardize the silymarin extraction. Quantitative analysis of the content of silymarin components was carried out using HPLC with qNMR-controlled reference standards of taxifolin and seven major flavonolignans including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, isosilychristin, and silydianin. The quantification method was validated in accordance with ICH guidelines. Principal component analysis and hierarchical clustering were carried out to create homogeneous clusters of samples based on the content of the silymarin components. Taxifolin had the lowest correlation relative to other silymarin components, whereas silybin A was positively correlated with silybin B. The samples clustered into three classes: silydianin-rich samples, samples with an average silymarin content of <18.8 mg/g, and one class enriched in silymarin (>18.8 mg/g). S. marianum growing in the Nile delta showed the highest silymarin content. No correlation was found between fruit color and silymarin content, indicating that the fruit maturity stage has no significance.
Liquid chromatography coupled with high resolution mass spectrometry (LC-HRESMS)-assisted metabolomic profiling of two sponge-associated actinomycetes, Micromonospora sp. UR56 and Actinokineospora sp. EG49, revealed that the co-culture of these two actinomycetes induced the accumulation of metabolites that were not traced in their axenic cultures. Dereplication suggested that phenazine-derived compounds were the main induced metabolites. Hence, following large-scale co-fermentation, the major induced metabolites were isolated and structurally characterized as the already known dimethyl phenazine-1,6-dicarboxylate (1), phenazine-1,6-dicarboxylic acid mono methyl ester (phencomycin; 2), phenazine-1-carboxylic acid (tubermycin; 3), N-(2-hydroxyphenyl)-acetamide (9), and p-anisamide (10). Subsequently, the antibacterial, antibiofilm, and cytotoxic properties of these metabolites (1–3, 9, and 10) were determined in vitro. All the tested compounds except 9 showed high to moderate antibacterial and antibiofilm activities, whereas their cytotoxic effects were modest. Testing against Staphylococcus DNA gyrase-B and pyruvate kinase as possible molecular targets together with binding mode studies showed that compounds 1–3 could exert their bacterial inhibitory activities through the inhibition of both enzymes. Moreover, their structural differences, particularly the substitution at C-1 and C-6, played a crucial role in the determination of their inhibitory spectra and potency. In conclusion, the present study highlighted that microbial co-cultivation is an efficient tool for the discovery of new antimicrobial candidates and indicated phenazines as potential lead compounds for further development as antibiotic scaffold.
BackgroundThis study was conducted to identify medicinal plants and spices used for medicine by the community of Beni-Sueif, Upper Egypt.MethodsEthnobotanical data from local people was collected using direct interviews and a semi-structured questionnaire.ResultsForty-eight plant species belonging to twenty-seven families and forty-seven genera were encountered during the study. Their botanical and vernacular names, plant parts used and medicinal uses are given. Results of the study were analyzed using two quantitative tools. The factor informant consensus indicated the agreement in the use of plants and the fidelity level indicated the ratio between the number of informants who independently suggested the use of a species for the same major purpose and the total number of informants who mentioned the plant for any use. The results of the factor informant consensus showed that the cardiovascular category has the greatest agreement, followed by the immunological, gastrointestinal and respiratory categories. The most important species according to their fidelity are: Hibiscus sabdariffa L. for the cardiovascular category; Trigonella foenum-graecum L. for the immunological category; Mentha piperita L. for the gastrointestinal category and Pimpinella anisum L. for the respiratory category.ConclusionsMedicinal plants are still used for treatment in Beni-Sueif community despite the availability of prescribed medications. Documentation of this ethnomedicinal knowledge is important. Evaluation of pharmacological activity for the promising medicinal plants is suggested.
We explore the genus Micromonospora as a model for natural product research and the discovery progress from the classical bioassay-guided approaches through to the application of genome mining and genetic engineering techniques that target specific products.
Context: Tamarix nilotica (Ehrenb.) Bunge (Tamaricaceae) is used in the Egyptian traditional medicine as an antiseptic agent. This plant has been known since pharaonic times and has been mentioned in medical papyri to expel fever, relieve headache, to draw out inflammation, and as an aphrodisiac. No scientific study is available about the biological effect of this plant.Objective: This study aimed to evaluate the hydro-alcoholic extract (80%) of T. nilotica flowers for hepatoprotective and antioxidant activities. Materials and methods: Hepatoprotective activity was assessed using carbon tetrachloride-induced hepatic injury in rats by monitoring biochemical parameters. Antioxidant activity was evaluated in alloxan-induced diabetic rats. Biochemical markers of hepatic damage such as serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), and tissue glutathione were determined in all groups. Results and conclusion: Carbon tetrachloride (5 mL/kg body weight) enhanced the SGOT, SGPT, and ALP levels. There was a marked reduction in tissue glutathione level in diabetic rats. The hydro-alcoholic extract of T. nilotica (100 mg/kg body weight) ameliorated the adverse effects of carbon tetrachloride and returned the altered levels of biochemical markers near to the normal levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.