Recently progress has been made on O2 toxicity and pathology related to numerous environmental contaminants in insects. The pro-oxidants studied included: dioxin, paraquat, and an assorted array of quinones, 8-methoxypsorlen, arsenic, and mercury. The responses to these oxidants are diverse, but they arise from the reactive oxygen species. These pro-oxidants in insects cause lipid peroxidation, protein and enzyme oxidation, and GSH depletion. Potentially, they may also cause DNA oxidation, and form DNA adducts. Oxidative challenge is alleviated by antioxidant compounds, but more importantly by the induction of antioxidant enzymes, which are crucial for the termination of O2 radical cascade and lipid peroxidation chain reaction. Insects exhibit a wasting syndrome under sub-acute stress. In acute toxicity vital physiological processes impaired are hemolymph melanization and diuresis. Thus, insects resemble vertebrates in both the response to oxidative stress and its pathological consequences. These results raise the prospect that insects may serve as non-mammalian model species for monitoring the oxidative-stress component of environmental toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.