Polymers imprinted with clenbuterol were used to study the influence of various post-polymerization treatments [e.g., thermal annealing, microwave assisted extraction (MAE), Soxhlet extraction and supercritical fluid template desorption] on the bleeding of residual template. The aim of the study was to reduce the bleeding to levels that would allow the use of the materials as affinity phases for extraction of clenbuterol from bovine urine at concentrations below 1 ng ml-1. After treatment, the clenbuterol imprinted polymers were packed into solid-phase extraction columns and the bleeding was estimated by quantifying the amount of template released in 10 ml of methanol-acetic acid (9 + 1 v/v). This was followed by an assessment of selectivity and recovery in comparison with non-treated material. The lowest bleeding level was found after MAE using 100% trifluoroacetic acid for 3 x 20 min at 100 degrees C. The collected eluate contained in this case 3 ng ml-1 of clenbuterol. The same material was subsequently used for the extraction of clenbuterol from spiked bovine urine. The resulting selectivity and recovery were lower compared with those obtained using the untreated material. A milder but still efficient method to reduce the bleeding level was found to be MAE with formic acid. In this case a bleeding level of 14 ng ml-1 was found after only a 1 h extraction time. In a second model system, using a polymer imprinted with L-phenylalanine anilide, the bleeding was reduced to a similar level by extensive on-line washing in good swelling solvents containing acid or base additives and after thermal annealing of the polymers in the dry state.
Matrix solid-phase dispersion (MSPD) is a new sample pretreatment for solid samples. This technique greatly simplifies sample pretreatment but, nonetheless, the extracts often still require an extra cleanup step that is both laborious and time-consuming. The potential of combining MSPD with molecularly imprinted solid-phase extraction (MISPE) was investigated in this study. Liver samples were ground in a mortar with C18 sorbent and the homogenized mixture packed into an SPE cartridge and placed on top of a MISPE cartridge. Subsequently, clenbuterol was eluted from the MSPD cartridge onto the MISPE cartridge using acetonitrile containing 1% acetic acid. The ability of the molecularly imprinted polymer to selectively adsorb analyte in acetonitrile was exploited for re-extracting clenbuterol directly from this acetonitrile extract via the double cartridge tandem system. The analyte was eluted from the MISPE cartridge using acidified methanol. A clear eluate was obtained, which was subsequently evaporated, redissolved, and analyzed by HPLC electrochemical detection (ECD) or ion trap mass spectrometry (LC/IT-MS). The MISPE cartridge used in this study was imprinted using bromoclenbuterol, a structural analogue of clenbuterol, as the template. These MISPE cartridges showed excellent stability. The complete extraction procedure was rapid, and recoveries exceeded 90% for the target analyte. The method detection limit for the LC/IT-MS procedure was < 0.1 microg/kg. This method, therefore, satisfies the stringent requirements of European Union regulation EEC 2377/90.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.