Nucleotide excision repair (NER) functions to remove DNA damage caused by ultraviolet light and by other agents that distort the DNA helix. The NER machinery has been conserved in structure and function from yeast to humans, and in humans, defective NER is the underlying cause of the cancer-prone disease xeroderma pigmentosum. Here, we reconstitute the incision reaction of NER in Saccharomyces cerevisiae using purified protein factors. The Rad14 protein, the Rad4-Rad23 complex, the Rad2 nuclease, the Rad1-Rad10 nuclease, replication protein A, and the RNA polymerase II transcription factor TFIIH were purified to near homogeneity from yeast. We show that these protein factors are both necessary and sufficient for dual incision of DNA damaged by either ultraviolet light or N-acetoxy-2-aminoacetylfluorene. Incision in the reconstituted system requires ATP, which cannot be substituted by adenosine 5'-O-(3-thiotriphosphate), suggesting that the hydrolysis of ATP is indispensable for the incision reaction. The excision DNA fragments formed as a result of dual incision are in the 24-27-nucleotide range.
DNA mismatch repair plays a key role in the maintenance of genetic fidelity. Mutations in the human mismatch repair genes hMSH2, hMLH1, hPMS1, and hPMS2 are associated with hereditary nonpolyposis colorectal cancer. The proliferating cell nuclear antigen (PCNA) is essential for DNA replication, where it acts as a processivity factor. Here, we identify a point mutation, pol30 -104, in the Saccharomyces cerevisiae POL30 gene encoding PCNA that increases the rate of instability of simple repetitive DNA sequences and raises the rate of spontaneous forward mutation. Epistasis analyses with mutations in mismatch repair genes MSH2, MLH1, and PMS1 suggest that the pol30 -104 mutation impairs MSH2/ MLH1/PMS1-dependent mismatch repair, consistent with the hypothesis that PCNA functions in mismatch repair. MSH2 functions in mismatch repair with either MSH3 or MSH6, and the MSH2-MSH3 and MSH2-MSH6 heterodimers have a role in the recognition of DNA mismatches. Consistent with the genetic data, we find specific interaction of PCNA with the MSH2-MSH3 heterodimer.In both prokaryotes and eukaryotes, defects in DNA mismatch repair cause elevated spontaneous mutation rates and increased instability of simple repeat DNA sequences. Mutations in any of the human mismatch repair genes hMSH2, hMLH1, hPMS1, and hPMS2 are associated with hereditary nonpolyposis colorectal cancer. Cell lines from these cancers are defective in DNA mismatch repair and display increased levels of spontaneous mutations and frequent alterations of microsatellite repeat sequences (1, 2).Epistasis analyses in yeast have suggested that MSH2 protein functions in conjunction with MSH3 or MSH6 protein in mismatch recognition. Genetic and biochemical studies in both yeast and humans have further indicated that the MSH2-MSH3 and MSH2-MSH6 complexes differ in substrate specificities. In yeast, mutations in MSH3 cause an increase in instability of microsatellite tracts but have little effect on single-base mispairs, whereas mutations in MSH6 have a more prominent effect on the incidence of single-base mispairs than on microsatellite tract instability (3-5). From these and other genetic observations, it has been inferred that MSH2-MSH3 complex is more proficient in the removal of insertion-deletion mismatches of two or more nucleotides (4), whereas MSH2-MSH6 is better at removing single nucleotide mismatches (4, 5). Human cell lines defective in the MSH6 component of the MSH2-MSH6 heterodimer hMutS␣ exhibit a selective loss in the repair of base-base and single-nucleotide insertion-deletion mismatches; the repair of two-, three-, and four-nucleotide insertion-deletion mismatches is reduced 2-4-fold in these cell lines (6, 7). Consistent with genetic observations, hMutS␣ binds a G/T mismatch or a one nucleotide insertion-deletion mismatch with high efficiency (6). By contrast, the yeast MSH2-MSH3 heterodimer exhibits little affinity for a G/T mismatch but binds insertion-deletion mismatches with high specificity (8). The manner by which PMS1 and MLH1 function in mismatch...
The RAD25 gene of Saccharomyces cerevisiae functions in nucleotide excision repair of ultraviolet-damaged DNA and is also required for cell viability. The RAD25 protein shows remarkable homology to the protein encoded by the human nucleotide-excision-repair gene XPB (ERCC3), mutations in which cause the cancer-prone disease xeroderma pigmentosum and also Cockayne's syndrome. Here we purify RAD25 protein from S. cerevisiae and show that it contains single-stranded DNA-dependent ATPase and DNA helicase activities. Extract from the conditional lethal mutant rad25-ts24 exhibits a thermolabile transcriptional defect which can be corrected by the addition of RAD25 protein, indicating a direct and essential role of RAD25 in RNA polymerase II transcription. The protein encoded by the rad25799am allele is defective in DNA repair but is proficient in RNA polymerase II transcription, indicating that RAD25 DNA-repair activity is separable from its transcription function. The rad25 Arg-392 encoded product, which contains a mutation in the ATP-binding motif, is defective in RNA polymerase II transcription, suggesting that the RAD25-encoded DNA helicase functions in DNA duplex opening during transcription initiation.
Genetic and biochemical studies of Saccharomyces cerevisiae have indicated the involvement of a large number of protein factors in nucleotide excision repair (NER) of UV-damaged DNA. However, how MMS19 affects this process has remained unclear. Here, we report on the isolation of the MMS19 gene and the determination of its role in NER and other cellular processes. Genetic and biochemical evidence indicates that besides its function in NER, MMS19 also affects RNA polymerase II (Pol II) transcription. mms19delta cells do not grow at 37 degrees C, and mutant extract exhibits a thermolabile defect in Pol II transcription. Thus, Mms19 protein resembles TFIIH in that it is required for both transcription and DNA repair. However, addition of purified Mms19 protein does not alleviate the transcriptional defect of the mms19delta extract, nor does it stimulate the incision of UV-damaged DNA reconstituted from purified proteins. Interestingly, addition of purified TFIIH corrects the transcriptional defect of the mms19delta extract. Mms19 is, however, not a component of TFIIH or of Pol II holoenzyme. These and other results suggest that Mms19 affects NER and transcription by influencing the activity of TFIIH as an upstream regulatory element. It is proposed that mutations in the human MMS19 counterpart could result in syndromes in which both NER and transcription are affected.
The RAD3 gene of Saccharomyces cerevisiae is required for excision repair of ultraviolet-damaged DNA and is essential for cell viability. The RAD3-encoded protein shares a high degree of homology with the human ERCC2(XPD) gene product. Mutations in XPD, besides causing the cancer-prone syndrome xeroderma pigmentosum, can also result in Cockayne's syndrome and trichothiodystrophy. To investigate the role of RAD3 in viability, we examined here the effect of a recessive, temperature-sensitive (ts) conditional lethal mutation of the gene on transcription by RNA polymerase II. Upon transfer to the restrictive temperature, the rad3-ts mutant rapidly ceases growth and poly(A)+ RNA synthesis is inhibited drastically. Messenger RNA levels of all the genes examined, HIS3, TRP3, STE2, MET19, RAD23, CDC7, CDC9 and ACT1, decline rapidly upon loss of RAD3 activity. The synthesis of heat-shock-inducible HSP26 mRNA and galactose-inducible GAL7 and GAL10 mRNAs is also drastically inhibited in the rad3-ts mutant at the restrictive temperature. The RNA polymerase II transcriptional activity in extract from the rad3-ts14 strain is thermolabile, and this in vitro transcriptional defect can be fully corrected by the addition of homogeneous RAD3 protein. These findings indicate that RAD3 protein has a direct and essential role in RNA polymerase II transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.