Homologous recombination (HR) serves to eliminate deleterious lesions, such as double-stranded breaks and interstrand crosslinks, from chromosomes. HR is also critical for the preservation of replication forks, for telomere maintenance, and chromosome segregation in meiosis I. As such, HR is indispensable for the maintenance of genome integrity and the avoidance of cancers in humans. The HR reaction is mediated by a conserved class of enzymes termed recombinases. Two recombinases, Rad51 and Dmc1, catalyze the pairing and shuffling of homologous DNA sequences in eukaryotic cells via a filamentous intermediate on ssDNA called the presynaptic filament. The assembly of the presynaptic filament is a rate-limiting process that is enhanced by recombination mediators, such as the breast tumor suppressor BRCA2. HR accessory factors that facilitate other stages of the Rad51- and Dmc1-catalyzed homologous DNA pairing and strand exchange reaction have also been identified. Recent progress on elucidating the mechanisms of action of Rad51 and Dmc1 and their cohorts of ancillary factors is reviewed here.
Mutations in the Saccharomyces cerevisiae gene SRS2 result in the yeast's sensitivity to genotoxic agents, failure to recover or adapt from DNA damage checkpoint-mediated cell cycle arrest, slow growth, chromosome loss, and hyper-recombination. Furthermore, double mutant strains, with mutations in DNA helicase genes SRS2 and SGS1, show low viability that can be overcome by inactivating recombination, implying that untimely recombination is the cause of growth impairment. Here we clarify the role of SRS2 in recombination modulation by purifying its encoded product and examining its interactions with the Rad51 recombinase. Srs2 has a robust ATPase activity that is dependent on single-stranded DNA (ssDNA) and binds Rad51, but the addition of a catalytic quantity of Srs2 to Rad51-mediated recombination reactions causes severe inhibition of these reactions. We show that Srs2 acts by dislodging Rad51 from ssDNA. Thus, the attenuation of recombination efficiency by Srs2 stems primarily from its ability to dismantle the Rad51 presynaptic filament efficiently. Our findings have implications for the basis of Bloom's and Werner's syndromes, which are caused by mutations in DNA helicases and are characterized by increased frequencies of recombination and a predisposition to cancers and accelerated ageing.
The RAD51 gene of Saccharomyces cerevisiae is required for genetic recombination and DNA double-strand break repair. Here it is demonstrated that RAD51 protein pairs circular viral single-stranded DNA from phi X 174 or M13 with its respective homologous linear double-stranded form. The product of synapsis between these DNA partners is further processed by RAD51 to yield nicked circular duplex DNA, which indicates that RAD51 can catalyze strand exchange. The pairing and strand exchange reaction requires adenosine triphosphate, a result consistent with the presence of a DNA-dependent adenosine triphosphatase activity in RAD51 protein. Thus, RAD51 is a eukaryotic recombination protein that can catalyze the strand exchange reaction.
Posttranslational modification of proliferating cell nuclear antigen (PCNA), an essential processivity clamp for DNA polymerases, by ubiquitin and SUMO contributes to the coordination of DNA replication, damage tolerance, and mutagenesis. Whereas ubiquitination in response to DNA damage promotes the bypass of replication-blocking lesions, sumoylation during S phase is damage independent. As both modifiers target the same site on PCNA, an antagonistic action of SUMO on ubiquitin-dependent DNA damage tolerance has been proposed. We now present evidence that the apparent negative effect of SUMO on lesion bypass is not due to competition with ubiquitination but is rather mediated by the helicase Srs2p, which affects genome stability by suppressing unscheduled homologous recombination. We show that Srs2p physically interacts with sumoylated PCNA, which contributes to the recruitment of the helicase to replication forks. Our findings suggest a mechanism by which SUMO and ubiquitin cooperatively control the choice of pathway for the processing of DNA lesions during replication.
If not properly processed and repaired, DNA double-strand breaks (DSBs) can give rise to deleterious chromosome rearrangements, which could ultimately lead to the tumor phenotype 1, 2. DSB ends are resected in a 5′ to 3′ fashion in cells, to yield single-stranded DNA for the recruitment of factors critical for DNA damage checkpoint activation and repair by homologous recombination2. The resection process involves redundant pathways consisting of nucleases, DNA helicases, and associated proteins3. Being guided by recent genetic studies 4-6 , we have reconstituted the first eukaryotic ATP-dependent DNA end resection machinery comprising the Saccharomyces cerevisiae Mre11-Rad50-Xrs2 (MRX) complex, the Sgs1-Top3-Rmi1 (STR) complex, Dna2 protein and the heterotrimeric single-strand DNA binding protein RPA. We show that DNA strand separation during end resection is mediated by the Sgs1 helicase function, in a manner that is enhanced by Top3-Rmi1 and MRX. In congruence with genetic observations 6 , while the Dna2 nuclease activity is critical for resection, the Mre11 nuclease activity is dispensable. By examining the top3 Y356F allele and its encoded protein, we provide evidence that the topoisomerase activity of Top3, although critical for the suppression of crossover recombination 2,7 , is not needed for resection either in cells or in the reconstituted system. Our results also unveil a multi-faceted role of RPA, in the sequestration of ssDNA generated by DNA unwinding, enhancement of 5′ strand incision, and protection of the 3′ strand. Our reconstituted system should serve as a useful model for delineating the mechanistic intricacy of the DNA break resection process in eukaryotes.The 3′ ssDNA strands derived from DSB resection attract RPA, which promotes the recruitment of checkpoint proteins to effect cell cycle arrest 8 . With the aid of a recombination mediator protein, such as yeast Rad52 or human BRCA2, the Rad51 recombinase displaces RPA from the ssDNA to assemble into a right-handed helical polymer capable of initiating DSB repair by homologous recombination 1,2 . Genetic studies in yeast have shown that DSB resection proceeds in two steps. The MRX complex plays a 3 To whom correspondences and request for materials should be addressed: Gregory Ira: gira@bcm.edu, Patrick Sung: patrick.sung@yale.edu. role in initiation, while the Sgs1 helicase, its associated proteins Top3 and Rmi1, and the helicase/nuclease Dna2, whose nuclease activity is needed for Okazaki fragment processing 9,10 , constitute the DNA motor-driven path of long-range resection. Exo1, a 5′-3′ exonuclease, defines a redundant resection means 4-6 . Here we reconstitute the Sgs1/Dna2-dependent DNA resection machinery and present results germane for understanding its mechanistic underpinnings.The requisite factors, namely, Sgs1, Top3-Rmi1 (TR) complex, MRX complex, Dna2, and RPA were purified and analyzed (see Supplementary Fig. 2 and the Supplementary Information). As shown in Figure 1a, the combination of these factors degraded a 1.9-kb ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.