Stromal tumor-infiltrating lymphocytes (sTILs) are important prognostic and predictive biomarkers in triple-negative (TNBC) and HER2-positive breast cancer. Incorporating sTILs into clinical practice necessitates reproducible assessment. Previously developed standardized scoring guidelines have been widely embraced by the clinical and research communities. We evaluated sources of variability in sTIL assessment by pathologists in three previous sTIL ring studies. We identify common challenges and evaluate impact of discrepancies on outcome estimates in early TNBC using a newly-developed prognostic tool. Discordant sTIL assessment is driven by heterogeneity in lymphocyte distribution. Additional factors include: technical slide-related issues; scoring outside the tumor boundary; tumors with minimal assessable stroma; including lymphocytes associated with other structures; and including other inflammatory cells. Small variations in sTIL assessment modestly alter risk estimation in early TNBC but have the potential to affect treatment selection if cutpoints are employed. Scoring and averaging multiple areas, as well as use of reference images, improve consistency of sTIL evaluation. Moreover, to assist in avoiding the pitfalls identified in this analysis, we developed an educational resource available at www.tilsinbreastcancer.org/pitfalls.
The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC.
Progress in computing power and advances in medical imaging over recent decades have culminated in new opportunities for artificial intelligence (AI), computer vision, and using radiomics to facilitate clinical decision-making. These opportunities are growing in medical specialties, such as radiology, pathology, and oncology. As medical imaging and pathology are becoming increasingly digitized, it is recently recognized that harnessing data from digital images can yield parameters that reflect the underlying biology and physiology of various malignancies. This greater understanding of the behaviour of cancer can potentially improve on therapeutic strategies. In addition, the use of AI is particularly appealing in oncology to facilitate the detection of malignancies, to predict the likelihood of tumor response to treatments, and to prognosticate the patients' risk of cancer-related mortality. AI will be critical for identifying candidate biomarkers from digital imaging and developing robust and reliable predictive models. These models will be used to personalize oncologic treatment strategies, and identify confounding variables that are related to the complex biology of tumors and diversity of patient-related factors (ie, mining ''big data''). This commentary describes the growing body of work focussed on AI for precision oncology. Advances in AI-driven
Radiation-induced dermatitis is a common side effect of breast radiotherapy (RT).Current methods to evaluate breast skin toxicity include clinical examination, visual inspection, and patient-reported symptoms. Physiological changes associated with radiation-induced dermatitis, such as inflammation, may also increase body-surface temperature which can be detected by thermal imaging. Quantitative thermal imaging markers were identified using supervised machine-learning to develop a predictive model for radiation dermatitis.Methods: Ninety patients treated for adjuvant whole-breast radiotherapy (4250 Gy/f x =16) were recruited to the study. Thermal images of the treated breast were taken at four intervals: prior to RT, then weekly, at f x =5, f x =10, and f x =15. Parametric thermograms were analyzed and yielded 26 thermal-based features which included surface temperature (C) and texture parameters
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.