The zoonotic Onchocerca lupi and tick-transmitted filarioids of the genus Cercopithifilaria remain less well known due to the difficulties in accessing to skin samples as target tissues. Here, we proposed a molecular approach reliying on multiplex qPCR assays that allow the rapid identification of filarioids from canine blood, skin, and tick samples. This includes two newly developed duplex qPCR tests, the first one targeting filarial and C. grassii DNA (CanFil-C. grassii). and the second qPCR assay designed for the detection of Cercopithifilaria bainae and Cercopithifilaria sp. II DNAs (C. bainae-C.spII). The third one is a triplex TaqMan cox 1 assay targeting DNA of blood microfilariae (e.g., Dirofilaria immitis, Dirofilaria repens and Acanthocheilonema reconditum). The novel duplex qPCRs developed were validated in silico and by screening of known DNA collection. The qPCR assays were also used for screening the blood and tick samples of 72 dogs from Algeria. This allowed the identification of canine filariasis infection with 100% of specificity and 89.47% and 100% of sensitivity from naturally infected blood and tick samples, respectively. The prevalences of 26.39% for D. immitis and 5.56% for both D. repens and A. reconditum were reported in blood and tick samples. Cercopithifilaria DNAs were detected only in tick samples, with a prevalence of 4.17% and 5.56% for C. bainae and Cercopithifilaria sp. II, respectively. Co-infections were diagnosed in 6.94% and 13.89% of blood and tick samples, respectively. Whereas all samples were negative for C. grassii DNA. The use of engorged ticks instead of blood and skin samples could be an easier option for the surveillance of all canine filarioids herein investigated. The multiplex qPCR assays herein validated were shown to be useful in the detection of filarial co-infections by overcoming sequencing of positive samples.
Background Dirofilaria immitis and Dirofilaria repens are the main causative agents of heartworm disease and subcutaneous dirofilariasis in domestic and wild canids, respectively. Both pathogens have zoonotic potential and are transmitted by mosquitoes. The present study aimed to determine the transmission period, prevalence and diversity of Dirofilaria spp. vectors from endemic areas of Corsica (France). Methods A monthly point data model based on average temperature recorded by four meteorological stations during 2017 was used to calculate the Dirofilaria transmission period. From June to September 2017, female mosquitoes (n = 1802) were captured using Biogents® Sentinel 2 traps lured with carbon dioxide and BG-Lure™ or octanol. Mosquitoes were identified to species level, pooled accordingly, and screened using multiplex real-time qPCR to detect D. immitis and D. repens. Results The monthly point data model showed the possible transmission of Dirofilaria spp. from the third week in May to the last week in October in the studied area. Mosquitoes were identified as Ochlerotatus caspius (n = 1432), Aedes albopictus (n = 199), Culex pipiens sensu lato (n = 165) and Aedes vexans (n = 6) and were grouped into 109 pools (from 1 to 27 specimens, mean 11.4 ± 0.7), of which 16 scored positive for Dirofilaria spp. (i.e., n = 13; estimated infection rate [EIR] = 1.1% for D. immitis and n = 3; EIR = 0.2% for D. repens). Specifically, 6 (i.e., EIR = 3.8%) of 15 pools of Ae. albopictus were positive for D. immitis, 2 of 14 of Cx. pipiens s.l. were positive for D. immitis and D. repens, respectively, and 8 of 77 pools of Oc. caspius were positive for D. immitis (i.e., n = 6; EIR = 0.4%) and D. repens (i.e., 2; EIR = 0.1%). The highest mosquito infection rate was recorded in July (EIR = 2.5%), then in June (EIR = 1.3%) and September (EIR = 0.6%). Conclusions The data suggest that both Dirofilaria species are endemic and occur possibly in sympatry in the studied area in Corsica, highlighting the need to implement preventive chemoprophylaxis and vector control strategies to reduce the risk of these filarioids in dog and human populations. Graphical Abstract
Several zoonotic vector-borne helminths (VBHs) infesting canids cause serious veterinary and medical diseases worldwide. Increasing the knowledge about their genetic structures is pivotal to identify them and therefore to settle effective surveillance and control measures. To overcome the limitation due to the heterogeneity of large DNA sequence-datasets used for their genetic characterization, available cytochrome c oxidase subunit 1 (cox1) (n = 546) and the 12S rRNA (n = 280) sequences were examined using combined bioinformatic approach (i.e., distance-clustering, maximum likelihood phylogeny and phylogenetic evolutionary placement). Out of the 826 DNA available sequences from GenBank, 94.7% were characterized at the haplotype level regardless sequence size, completeness and/or their position. A total of 89 different haplotypes were delineated either by cox1 (n = 35), 12S rRNA (n = 21) or by both genes (n = 33), for 14 VBHs (e.g., Acanthocheilonema reconditum, Brugia spp., Dirofilaria immitis, Dirofilaria repens, Onchocerca lupi and Thelazia spp.). Overall, the present approach could be useful for studying global genetic diversity and phylogeography of VBHs. However, as barcoding sequences were restricted to two mitochondrial loci (cox1 and 12S rRNA), the haplotype delineation proposed herein should be confirmed by the characterization of other nuclear loci also to overcome potential limitations caused by the heteroplasmy phenomenon within the mitogenome of VBHs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.