Self-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube. In particular, we observe the formation of a plastic crystal phase with translational order and orientational disorder, and the subsequent transformation into rhombohedral crystals. Moreover, we uncover that the phase behaviour is richer than predicted, as we find two distinct rhombohedral crystals with different stacking variants, namely hollow-site and bridge-site stacking. In addition, for slightly softer interactions we observe a solid–solid transition between the two. Our investigation brings us one step closer to ultimately controlling the experimental self-assembly of superballs into functional materials, such as photonic crystals.
The hierarchical self-assembly of sugar and surfactant molecules into hollow tubular microstructures was characterized in situ with high resolution small-angle X-ray scattering spanning more than three orders of magnitude of spatial scales. Scattering profiles reveal that aqueous host-guest inclusion complexes self-assemble into multiple equally spaced curved bilayers forming a collection of concentric hollow cylinders. Scattering data can be described by a simple theoretical model of the microtubes. The interlamellar distance was found to be surprisingly large. Moreover, we report that the multi-walled structure of the microtubes swells as the concentration or the temperature is varied.
Synthetic microswimmers are widely employed model systems in the studies of out-of-equilibrium phenomena. Unlike biological microswimmers which naturally occur in various shapes and forms, synthetic microswimmers have so far been...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.