We develop first-order smoothing techniques for saddle-point problems that arise in finding a Nash equilibrium of sequential games. The crux of our work is a construction of suitable prox-functions for a certain class of polytopes that encode the sequential nature of the game. We also introduce heuristics that significantly speed up the algorithm, and decomposed game representations that reduce the memory requirements, enabling the application of the techniques to drastically larger games. An implementation based on our smoothing techniques computes approximate Nash equilibria for games that are more than four orders of magnitude larger than what prior approaches can handle. Finally, we show near-linear further speedups from parallelization.
Abstract. Fixed-width MDDs were introduced recently as a more refined alternative for the domain store to represent partial solutions to CSPs. In this work, we present a systematic approach to MDD-based constraint programming. First, we introduce a generic scheme for constraint propagation in MDDs. We show that all previously known propagation algorithms for MDDs can be expressed using this scheme. Moreover, we use the scheme to produce algorithms for a number of other constraints, including Among, Element, and unary resource constraints. Finally, we discuss an implementation of our MDD-based CP solver, and provide experimental evidence of the benefits of MDD-based constraint programming.
We present a computational approach to the saddle-point formulation for the Nash equilibria of two-person, zerosum sequential games of imperfect information. The algorithm is a first-order gradient method based on modern smoothing techniques for non-smooth convex optimization. The algorithm requires O(1/) iterations to compute an-equilibrium, and the work per iteration is extremely low. These features enable us to find approximate Nash equilibria for sequential games with a tree representation of about 10 10 nodes. This is three orders of magnitude larger than what previous algorithms can handle. We present two heuristic improvements to the basic algorithm and demonstrate their efficacy on a range of real-world games. Furthermore, we demonstrate how the algorithm can be customized to a specific class of problems with enormous memory savings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.