We study, in this paper, infection dynamics when an epidemic emerges to many regions which are connected with their neighbors by any kind of anthropological movement. For this, we devise a multi-regions discrete-time model with the three classical SIR compartments, describing the spatial-temporal behaviors of homogenous susceptible, infected and removed populations. We suppose a large geographical domain, presented by a grid of colored cells, to exhibit at each instant i the spatial propagation of an epidemic which affects its different parts or sub-domains that we call here cells or regions. In order to minimize the number of infected individuals in some regions, we suggest an optimal control approach based on a travel-blocking vicinity strategy which aims to control a group of cells, or a patch, by restricting movements of infected people coming from its neighboring cells. We apply a discrete version of Pontryagin's maximum principle to state the necessary conditions and characterization of the travel-blocking optimal controls. We provide cellular simulations based on discrete progressive-regressive iterative schemes associated with the obtained multi-points boundary value problems. For illustrating the modeling and optimal control approaches, we consider an example of 100 regions.
We extend the result of Kirk-Saliga and we generalize Alfuraidan and Khamsi theorem for reflexive graphs. As a consequence, we obtain the ordered version of Caristi's fixed point theorem. Some concrete examples are given to support the obtained results.
In this paper we introduce the notion of proximal ρ-normal structure of pair of ρ-admissible sets in modular spaces. We prove some results of best proximity points in this setting without recourse to Zorn’s lemma. We provide some examples to support our conclusions.
In this paper, we use Szaz maximum principle to prove generalizations of Caristi fixed point theorem in a ´ preordered K-complete quasi metric space. Examples are given to support our results.
We consider the problem of best proximity point in locally convex spaces endowed with a weakly convex digraph. For that, we introduce the notions of nonself G-contraction and G-nonexpansive mappings, and we show that for each seminorm, we have a best proximity point. In addition, we conclude our work with a result showing the existence of best proximity point for every seminorm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.