A Bayesian probabilistic methodology is presented for structural model updating using incomplete measured modal data which also takes into account different types of errors such as modelling errors due to the approximation of actual complex structure, uncertainties introduced by variation in material and geometric properties, measurement errors due to the noises in the signal and the data processing. The present work uses Linear Optimization Problems (LOP) to compute the probability that continually updated the model parameters. A real life rail-cum-roadway long steel truss bridge (Saraighat bridge) is considered in the present study, where identified modal data are available from measured acceleration responses due to ambient vibration. The main contributions of this paper are: (1) the introduction of sufficient number of model parameters at the element property level in order to capture any variations in the sectional properties; (2) the development of an accurate baseline model by utilizing limited sensor data; (3) the implementation of a probabilistic damage detection approach that utilizes updated model parameters from the undamaged state and possibly damaged state of the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.